Suppr超能文献

心电图和肌电图连续解析小波变换的定量特征分析。

Quantitative feature analysis of continuous analytic wavelet transforms of electrocardiography and electromyography.

机构信息

Department of Computer Science and Mathematics, Nipissing University, North Bay, Ontario, Canada P1B 8L7

School of Physical and Health Education, Nipissing University, North Bay, Ontario, Canada P1B 8L7.

出版信息

Philos Trans A Math Phys Eng Sci. 2018 Aug 13;376(2126). doi: 10.1098/rsta.2017.0250.

Abstract

Theoretical and practical advances in time-frequency analysis, in general, and the continuous wavelet transform (CWT), in particular, have increased over the last two decades. Although the Morlet wavelet has been the default choice for wavelet analysis, a new family of analytic wavelets, known as generalized Morse wavelets, which subsume several other analytic wavelet families, have been increasingly employed due to their time and frequency localization benefits and their utility in isolating and extracting quantifiable features in the time-frequency domain. The current paper describes two practical applications of analysing the features obtained from the generalized Morse CWT: (i) electromyography, for isolating important features in muscle bursts during skating, and (ii) electrocardiography, for assessing heart rate variability, which is represented as the ridge of the main transform frequency band. These features are subsequently quantified to facilitate exploration of the underlying physiological processes from which the signals were generated.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.

摘要

理论和实践上的时频分析进展,一般来说,特别是连续小波变换(CWT),在过去二十年中得到了增强。尽管 Morlet 小波已成为小波分析的默认选择,但由于其时间和频率定位优势以及在分离和提取时频域中可量化特征的实用性,一种新的解析小波族,即广义 Morse 小波,已经越来越多地被采用,它包含了其他几种解析小波族。本文描述了分析广义 Morse CWT 获得的特征的两个实际应用:(i)肌电图,用于分离滑冰过程中肌肉爆发的重要特征;(ii)心电图,用于评估心率变异性,它表示为主变换频带的脊。这些特征随后被量化,以促进从产生信号的潜在生理过程进行探索。本文是主题为“冗余规则:连续小波变换时代的到来”的一部分。

相似文献

2
Assessing heart rate variability through wavelet-based statistical measures.通过基于小波的统计方法评估心率变异性。
Comput Biol Med. 2016 Oct 1;77:222-30. doi: 10.1016/j.compbiomed.2016.07.008. Epub 2016 Jul 19.

引用本文的文献

本文引用的文献

2
Assessing heart rate variability through wavelet-based statistical measures.通过基于小波的统计方法评估心率变异性。
Comput Biol Med. 2016 Oct 1;77:222-30. doi: 10.1016/j.compbiomed.2016.07.008. Epub 2016 Jul 19.
4
Recording and analysis techniques for high-frequency oscillations.高频震荡的记录和分析技术。
Prog Neurobiol. 2012 Sep;98(3):265-78. doi: 10.1016/j.pneurobio.2012.02.006. Epub 2012 Mar 7.
5
Single-trial multiwavelet coherence in application to neurophysiological time series.
IEEE Trans Biomed Eng. 2007 May;54(5):854-62. doi: 10.1109/TBME.2006.889185.
6
Heart rate variability: a review.心率变异性:综述
Med Biol Eng Comput. 2006 Dec;44(12):1031-51. doi: 10.1007/s11517-006-0119-0. Epub 2006 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验