Sun Ling-Chun, Lee Chia-Chiang, Ke Hung-Yen, Wei Chih-Yuan, Lin Ke-Feng, Lin Shih-Sung, Hsiu Hsin, Chen Ping-Nan
School of Medicine, National Defense Medical Center, Taipei, 11490, Taiwan.
Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan.
BMC Med Inform Decis Mak. 2025 Jan 21;22(Suppl 5):349. doi: 10.1186/s12911-025-02872-5.
As the incidence and prevalence of Atrial Fibrillation (AF) proliferate worldwide, the condition has become the epicenter of a plethora of ECG diagnostic research. In recent diagnostic methodologies, Morse Continuous Wavelet Transform (MsCWT) is a feature extraction technique utilized to draw out distinctive attributes of ECG signals. In our study, we explore the employment of MsCWT in the classification of AF with ECG signals in a continuum.
We present a MsCWT image-based deep learning machine for AF differentiation. For the training, validation, and test sets, we achieved average accuracies of 97.94%, 97.84%, and 91.32%; and overall F1 scores of 97.13%, 96.86%, and 89.41% respectively. Moreover, AUC ROC curves of over 0.99 were obtained for all classes in the training and validation sets; and were over 0.9679 for the test set.
Training deep learning machines for the classification of AF with MsCWT-based images demonstrated to yield favorable outcomes and achieved superior performance amongst studies utilizing the same dataset. Though minimal, the conversion of signals into wavelet form with MsCWT may drastically improve outcomes not only in future ECG signal studies; but all signal-based diagnostics.
随着心房颤动(AF)在全球范围内的发病率和患病率不断上升,该病症已成为大量心电图诊断研究的核心。在最近的诊断方法中,莫尔斯连续小波变换(MsCWT)是一种用于提取心电图信号独特特征的特征提取技术。在我们的研究中,我们探索了MsCWT在连续心电图信号中对房颤进行分类的应用。
我们提出了一种基于MsCWT图像的深度学习机器用于房颤鉴别。对于训练集、验证集和测试集,我们分别实现了97.94%、97.84%和91.32%的平均准确率;以及97.13%、96.86%和89.41%的总体F1分数。此外,训练集和验证集中所有类别的AUC ROC曲线均超过0.99;测试集的AUC ROC曲线超过0.9679。
使用基于MsCWT的图像训练用于房颤分类的深度学习机器显示出产生了良好的结果,并且在使用相同数据集的研究中取得了卓越的性能。尽管将信号转换为MsCWT小波形式的影响很小,但这不仅可能在未来的心电图信号研究中大幅改善结果;而且在所有基于信号的诊断中都可能如此。