Jurado F, Lopez S
Tecnológico Nacional de México/I.T. La Laguna, Blvd. Revolución y Av. Instituto Tecnológico de La Laguna, Col. Centro, 27000 Torreón, Coahuila de Zaragoza, Mexico
Tecnológico Nacional de México/I.T. La Laguna, Blvd. Revolución y Av. Instituto Tecnológico de La Laguna, Col. Centro, 27000 Torreón, Coahuila de Zaragoza, Mexico.
Philos Trans A Math Phys Eng Sci. 2018 Aug 13;376(2126). doi: 10.1098/rsta.2017.0248.
Wavelets are designed to have compact support in both time and frequency, giving them the ability to represent a signal in the two-dimensional time-frequency plane. The Gaussian, the Mexican hat and the Morlet wavelets are crude wavelets that can be used only in continuous decomposition. The Morlet wavelet is complex-valued and suitable for feature extraction using the continuous wavelet transform. Continuous wavelets are favoured when high temporal and spectral resolution is required at all scales. In this paper, considering the properties from the Morlet wavelet and based on the structure of a recurrent high-order neural network model, a novel wavelet neural network structure, here called a recurrent Morlet wavelet neural network, is proposed in order to achieve a better identification of the behaviour of dynamic systems. The effectiveness of our proposal is explored through the design of a decentralized neural backstepping control scheme for a quadrotor unmanned aerial vehicle. The performance of the overall neural identification and control scheme is verified via simulation and real-time results.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
小波被设计为在时间和频率上都具有紧支集,这使它们能够在二维时频平面中表示信号。高斯小波、墨西哥帽小波和莫雷小波是粗糙的小波,只能用于连续分解。莫雷小波是复值的,适用于使用连续小波变换进行特征提取。当在所有尺度上都需要高时间和频谱分辨率时,连续小波更受青睐。在本文中,考虑到莫雷小波的特性,并基于递归高阶神经网络模型的结构,提出了一种新颖的小波神经网络结构,在此称为递归莫雷小波神经网络,以更好地识别动态系统的行为。通过为四旋翼无人机设计一种分散神经反步控制方案,探索了我们提议的有效性。通过仿真和实时结果验证了整个神经识别和控制方案的性能。本文是主题特刊“冗余规则:连续小波变换走向成熟”的一部分。