López-Santiago J
Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés 28911, Spain
Philos Trans A Math Phys Eng Sci. 2018 Aug 13;376(2126). doi: 10.1098/rsta.2017.0253.
Wavelet analysis is a powerful tool to investigate non-stationary signals such as amplitude modulated sinusoids or single events lasting for a small percentage of the observing time. Wavelet analysis can be used, for example, to reveal oscillations in the light curve of stars during coronal flares. A careful treatment of the background in the wavelet scalogram is necessary to determine robust confidence levels required to distinguish between patterns caused by actual oscillations and noise. This work describes the method using synthetic light curves and investigates the effect of background noise when determining confidence levels in the scalogram. The result of this analysis shows that the wavelet transform is able to reveal oscillatory patterns even when frequency-dependent noise is dominant. However, their significance in the wavelet scalogram may be reduced, depending on the assumed background spectrum. To show the power of wavelet analysis, the light curve of a well-known flaring star is analysed. It shows two oscillations overlapped. The lower-frequency oscillation is not mentioned in previous works in the literature. This result demonstrates the need for correctly characterizing the background noise of the signal.This article is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
小波分析是一种用于研究非平稳信号的强大工具,如调幅正弦波或持续时间仅占观测时间小比例的单个事件。例如,小波分析可用于揭示日冕耀斑期间恒星光变曲线中的振荡。在小波尺度图中仔细处理背景对于确定区分由实际振荡和噪声引起的模式所需的可靠置信水平是必要的。这项工作描述了使用合成光变曲线的方法,并在确定尺度图中的置信水平时研究了背景噪声的影响。该分析结果表明,即使频率相关噪声占主导,小波变换也能够揭示振荡模式。然而,根据假设的背景频谱,它们在小波尺度图中的显著性可能会降低。为了展示小波分析的能力,对一颗著名耀星的光变曲线进行了分析。结果显示有两种振荡相互重叠。文献中之前的研究未提及低频振荡。这一结果表明需要正确表征信号的背景噪声。本文是主题为“冗余规则:连续小波变换走向成熟”这一特刊的一部分。