Department of Basic Psychology and Methodology, University of Murcia, Murcia, Spain.
School of Social and Community Medicine, University of Bristol, Bristol, UK.
Res Synth Methods. 2018 Sep;9(3):489-503. doi: 10.1002/jrsm.1312. Epub 2018 Jul 30.
The random-effects model, applied in most meta-analyses nowadays, typically assumes normality of the distribution of the effect parameters. The purpose of this study was to examine the performance of various random-effects methods (standard method, Hartung's method, profile likelihood method, and bootstrapping) for computing an average effect size estimate and a confidence interval (CI) around it, when the normality assumption is not met. For comparison purposes, we also included the fixed-effect model. We manipulated a wide range of conditions, including conditions with some degree of departure from the normality assumption, using Monte Carlo simulation. To simulate realistic scenarios, we chose the manipulated conditions from a systematic review of meta-analyses on the effectiveness of psychological treatments. We compared the performance of the different methods in terms of bias and mean squared error of the average effect estimators, empirical coverage probability and width of the CIs, and variability of the standard errors. Our results suggest that random-effects methods are largely robust to departures from normality, with Hartung's profile likelihood methods yielding the best performance under suboptimal conditions.
在现今大多数元分析中应用的随机效应模型通常假定效应参数分布的正态性。本研究旨在检验各种随机效应方法(标准方法、Hartung 方法、轮廓似然方法和自举法)在不符合正态性假设时计算平均效应大小估计值及其置信区间(CI)的性能。为了比较目的,我们还包括了固定效应模型。我们通过蒙特卡罗模拟,使用各种条件来操纵,包括在一定程度上偏离正态性假设的条件。为了模拟现实情况,我们从关于心理治疗效果的元分析系统评价中选择了操纵条件。我们根据平均效应估计量的偏差和均方误差、CI 的经验覆盖率和宽度以及标准误差的可变性来比较不同方法的性能。我们的结果表明,随机效应方法对偏离正态性具有很大的稳健性,在次优条件下,Hartung 轮廓似然方法表现最佳。