Department of Data Science, The Institute of Statistical Mathematics.
Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics.
J Epidemiol. 2022 Oct 5;32(10):441-448. doi: 10.2188/jea.JE20200376. Epub 2021 Jun 22.
In meta-analysis, the normal distribution assumption has been adopted in most systematic reviews of random-effects distribution models due to its computational and conceptual simplicity. However, this restrictive model assumption is possibly unsuitable and might have serious influences in practices.
We provide two examples of real-world evidence that clearly show that the normal distribution assumption is explicitly unsuitable. We propose new random-effects meta-analysis methods using five flexible random-effects distribution models that can flexibly regulate skewness, kurtosis and tailweight: skew normal distribution, skew t-distribution, asymmetric Subbotin distribution, Jones-Faddy distribution, and sinh-arcsinh distribution. We also developed a statistical package, flexmeta, that can easily perform these methods.
Using the flexible random-effects distribution models, the results of the two meta-analyses were markedly altered, potentially influencing the overall conclusions of these systematic reviews.
The restrictive normal distribution assumption in the random-effects model can yield misleading conclusions. The proposed flexible methods can provide more precise conclusions in systematic reviews.
在荟萃分析中,由于其计算和概念上的简单性,大多数随机效应分布模型的系统评价都采用正态分布假设。然而,这种限制性的模型假设可能不合适,并可能在实践中产生严重影响。
我们提供了两个真实证据的例子,清楚地表明正态分布假设明显不合适。我们提出了新的随机效应荟萃分析方法,使用五个灵活的随机效应分布模型,可以灵活调节偏度、峰度和尾部重量:斜正态分布、斜 t 分布、不对称的 Subbotin 分布、Jones-Faddy 分布和 sinh-arcsinh 分布。我们还开发了一个统计软件包 flexmeta,可以轻松执行这些方法。
使用灵活的随机效应分布模型,这两项荟萃分析的结果发生了明显变化,可能影响这些系统评价的总体结论。
随机效应模型中限制性的正态分布假设可能会产生误导性的结论。所提出的灵活方法可以在系统评价中提供更精确的结论。