Suppr超能文献

香叶酰化聚糖作为药物传递平台:合成、表征及与黏液粒子相互作用的研究。

Farnesylated Glycol Chitosan as a Platform for Drug Delivery: Synthesis, Characterization, and Investigation of Mucus-Particle Interactions.

机构信息

Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI) , ‡Department of Pharmacy , §INM-Leibniz Institute for New Materials , and ⊥Korea Institute of Science and Technology, KIST Europe , Saarland University , D-66123 Saarbrücken , Germany.

Department of Anesthesia and Intensive Care , Klinikum Saarbrücken , 66119 Saarbrücken , Germany.

出版信息

Biomacromolecules. 2018 Aug 13;19(8):3489-3501. doi: 10.1021/acs.biomac.8b00795. Epub 2018 Jul 23.

Abstract

Amphiphilic polymer-based drug delivery systems hold potential in enhancing pharmacokinetics and therapeutic efficacy due to their ability to simultaneously codeliver different drugs in a controlled manner. We propose here a facile method for synthesizing a new amphiphilic polymer, farnesylated glycol chitosan (FGC), which self-assembles into nanoparticles upon being dispersed in aqueous media. The characteristics of FGC nanoparticles, in particular the size, could be tuned in a range from 200 to 500 nm by modulating the degree of farnesylation and the pH and polymer concentration during particle preparation. Carrier capacity, release kinetics, and surface modification of the established system were investigated using different model compounds. The colloids were biocompatible and stable at biologically relevant pH values. The interactions between the carriers and human mucus were examined by multiple particle tracking, which revealed that ∼80% of the particles remain immobilized within the mucus matrix. These results postulate FGC as a versatile drug delivery platform.

摘要

基于两亲性聚合物的药物传递系统具有同时以受控方式共递不同药物的能力,因此在增强药代动力学和治疗效果方面具有潜力。我们在这里提出了一种简便的方法来合成一种新型的两亲性聚合物,法呢基化乙二醇壳聚糖(FGC),当它分散在水介质中时会自组装成纳米颗粒。FGC 纳米颗粒的特性,特别是粒径,可以通过调节法呢基化程度以及颗粒制备过程中的 pH 值和聚合物浓度来在 200 至 500nm 的范围内进行调整。使用不同的模型化合物研究了所建立系统的载药能力、释放动力学和表面修饰。胶体在与生物相关的 pH 值下具有生物相容性和稳定性。通过多颗粒跟踪研究了载体与人粘液之间的相互作用,结果表明约 80%的颗粒仍固定在粘液基质中。这些结果将 FGC 假定为一种多功能药物传递平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验