文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳聚糖功能化:共价和非共价相互作用及其表征

Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization.

作者信息

Nicolle Laura, Journot Céline M A, Gerber-Lemaire Sandrine

机构信息

Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6, CH-1015 Lausanne, Switzerland.

出版信息

Polymers (Basel). 2021 Nov 26;13(23):4118. doi: 10.3390/polym13234118.


DOI:10.3390/polym13234118
PMID:34883621
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659004/
Abstract

Chitosan (CS) is a natural biopolymer that has gained great interest in many research fields due to its promising biocompatibility, biodegradability, and favorable mechanical properties. The versatility of this low-cost polymer allows for a variety of chemical modifications via covalent conjugation and non-covalent interactions, which are designed to further improve the properties of interest. This review aims at presenting the broad range of functionalization strategies reported over the last five years to reflect the state-of-the art of CS derivatization. We start by describing covalent modifications performed on the CS backbone, followed by non-covalent CS modifications involving small molecules, proteins, and metal adjuvants. An overview of CS-based systems involving both covalent and electrostatic modification patterns is then presented. Finally, a special focus will be given on the characterization techniques commonly used to qualify the composition and physical properties of CS derivatives.

摘要

壳聚糖(CS)是一种天然生物聚合物,因其具有良好的生物相容性、生物降解性和有利的机械性能,在许多研究领域引起了极大的关注。这种低成本聚合物的多功能性允许通过共价结合和非共价相互作用进行各种化学修饰,旨在进一步改善感兴趣的性能。本综述旨在介绍过去五年报道的广泛功能化策略,以反映壳聚糖衍生化的最新技术水平。我们首先描述对壳聚糖主链进行的共价修饰,然后是涉及小分子、蛋白质和金属佐剂的非共价壳聚糖修饰。接着概述涉及共价和静电修饰模式的基于壳聚糖的系统。最后,将特别关注常用于鉴定壳聚糖衍生物的组成和物理性质的表征技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/f3a99b147a3e/polymers-13-04118-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/6846d053a2f2/polymers-13-04118-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/3fe1713cd689/polymers-13-04118-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/662176a5d967/polymers-13-04118-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/d1e9c9f47578/polymers-13-04118-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/a0bc15cfce92/polymers-13-04118-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/5adc7ff3c6fc/polymers-13-04118-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/73e515906cfe/polymers-13-04118-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/0def2905929d/polymers-13-04118-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/a0fb27bca04d/polymers-13-04118-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/31fe291d6f13/polymers-13-04118-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/a9110aea6c70/polymers-13-04118-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/be0edec6b869/polymers-13-04118-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/5f7573f040ab/polymers-13-04118-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/75e5336a1b27/polymers-13-04118-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/6efd25ce3536/polymers-13-04118-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/d36884d316f0/polymers-13-04118-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/864ed8fc30af/polymers-13-04118-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/775ef03b9a32/polymers-13-04118-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/9da7ee96f580/polymers-13-04118-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/14f6c01559a1/polymers-13-04118-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/c8832fce5837/polymers-13-04118-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/33a534c53f1b/polymers-13-04118-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/f3a99b147a3e/polymers-13-04118-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/6846d053a2f2/polymers-13-04118-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/3fe1713cd689/polymers-13-04118-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/662176a5d967/polymers-13-04118-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/d1e9c9f47578/polymers-13-04118-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/a0bc15cfce92/polymers-13-04118-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/5adc7ff3c6fc/polymers-13-04118-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/73e515906cfe/polymers-13-04118-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/0def2905929d/polymers-13-04118-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/a0fb27bca04d/polymers-13-04118-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/31fe291d6f13/polymers-13-04118-sch005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/a9110aea6c70/polymers-13-04118-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/be0edec6b869/polymers-13-04118-sch006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/5f7573f040ab/polymers-13-04118-sch007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/75e5336a1b27/polymers-13-04118-sch008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/6efd25ce3536/polymers-13-04118-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/d36884d316f0/polymers-13-04118-sch009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/864ed8fc30af/polymers-13-04118-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/775ef03b9a32/polymers-13-04118-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/9da7ee96f580/polymers-13-04118-sch010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/14f6c01559a1/polymers-13-04118-sch011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/c8832fce5837/polymers-13-04118-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/33a534c53f1b/polymers-13-04118-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8a/8659004/f3a99b147a3e/polymers-13-04118-g012.jpg

相似文献

[1]
Chitosan Functionalization: Covalent and Non-Covalent Interactions and Their Characterization.

Polymers (Basel). 2021-11-26

[2]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[3]
Extraction, chemical modification and characterization of chitin and chitosan.

Int J Biol Macromol. 2018-8-30

[4]
Optimized aptamer functionalization for enhanced anticancer efficiency in vivo.

Int J Pharm. 2022-11-25

[5]
Advances in chitosan and chitosan derivatives for biomedical applications in tissue engineering: An updated review.

Int J Biol Macromol. 2024-3

[6]
Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update.

Chirality. 2022-9

[7]
Biomedical Application of Chitosan and Chitosan Derivatives: A Comprehensive Review.

Curr Pharm Des. 2023

[8]
A Review on Chitosan's Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment.

Materials (Basel). 2020-11-6

[9]
Chemical Modification of Chitosan for Developing Cancer Nanotheranostics.

Biomacromolecules. 2022-6-13

[10]
Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery.

Biomaterials. 2014-10-26

引用本文的文献

[1]
Quaternized chitosan derivatives inhibit growth and affect biofilm formation of Staphylococcus aureus.

Sci Rep. 2025-8-12

[2]
Advances and future directions of aptamer-functionalized nanoparticles for point-of-care diseases diagnosis.

Biol Methods Protoc. 2025-6-5

[3]
Carbon nanotubes/ordered mesoporous carbon/chitosan nanocomposite as a promising carrier for everolimus targeted delivery toward lung cancer cells.

J Mater Sci Mater Med. 2025-5-31

[4]
Regenerative potential of graphene oxide-chitosan nanocomposite combined with fetal bovine serum on healing of full-thickness skin wound in rats.

BMC Vet Res. 2025-5-7

[5]
Single and Multitarget Systems for Drug Delivery and Detection: Up-to-Date Strategies for Brain Disorders.

Pharmaceuticals (Basel). 2023-12-12

[6]
Novel Double Hybrid-Type Bone Cements Based on Calcium Phosphates, Chitosan and Citrus Pectin.

Int J Mol Sci. 2023-8-30

[7]
Non-Covalent Interactions in Polymers.

Polymers (Basel). 2023-2-24

[8]
Deposition of Chitosan on Plasma-Treated Polymers-A Review.

Polymers (Basel). 2023-2-23

[9]
Biomaterials-Enhanced Intranasal Delivery of Drugs as a Direct Route for Brain Targeting.

Int J Mol Sci. 2023-2-8

[10]
Modification of Physio-Mechanical Properties of Chitosan-Based Films via Physical Treatment Approach.

Polymers (Basel). 2022-11-30

本文引用的文献

[1]
study of chitosan-based multi-responsive hydrogels as drug release vehicles: a preclinical study.

RSC Adv. 2019-10-1

[2]
Characterization of Gelatin/Gellan Gum/Glycol Chitosan Ternary Hydrogel for Retinal Pigment Epithelial Tissue Reconstruction Materials.

ACS Appl Bio Mater. 2020-9-21

[3]
Self-Healing and Injectable Hydrogels for Anticancer Drug Delivery: A Study with Multialdehyde Gum Arabic and Succinic Anhydride Chitosan.

ACS Appl Bio Mater. 2020-12-21

[4]
Chitosan Natural Polymer Material for Improving Antibacterial Properties of Textiles.

ACS Appl Bio Mater. 2021-5-17

[5]
Chitosan-Based Hydrogel for the Dual Delivery of Antimicrobial Agents Against Bacterial Methicillin-Resistant Biofilm-Infected Wounds.

ACS Omega. 2021-8-19

[6]
pH-Responsive Chitosan/Alginate Polyelectrolyte Complexes on Electrospun PLGA Nanofibers for Controlled Drug Release.

Nanomaterials (Basel). 2021-7-17

[7]
Chitosan/Gelatin/PVA Scaffolds for Beta Pancreatic Cell Culture.

Polymers (Basel). 2021-7-20

[8]
Improved functionality of Ligilactobacillus salivarius Li01 in alleviating colonic inflammation by layer-by-layer microencapsulation.

NPJ Biofilms Microbiomes. 2021-7-9

[9]
Modular synthesis of amphiphilic chitosan derivatives based on copper-free click reaction for drug delivery.

Int J Pharm. 2021-8-10

[10]
Cross-Linked Chitosan/Multi-Walled Carbon Nanotubes Composite as Ecofriendly Biocatalyst for Synthesis of Some Novel Benzil Bis-Thiazoles.

Polymers (Basel). 2021-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索