IEEE Trans Biomed Eng. 2018 Aug;65(8):1798-1809. doi: 10.1109/TBME.2017.2778007. Epub 2017 Nov 27.
Temporal enhanced ultrasound (TeUS) is a new ultrasound-based imaging technique that provides tissue-specific information. Recent studies have shown the potential of TeUS for improving tissue characterization in prostate cancer diagnosis. We study the temporal properties of TeUS-temporal order and length-and present a new framework to assess their impact on tissue information.
We utilize a probabilistic modeling approach using hidden Markov models (HMMs) to capture the temporal signatures of malignant and benign tissues from TeUS signals of nine patients. We model signals of benign and malignant tissues (284 and 286 signals, respectively) in their original temporal order as well as under order permutations. We then compare the resulting models using the Kullback-Liebler divergence and assess their performance differences in characterization. Moreover, we train HMMs using TeUS signals of different durations and compare their model performance when differentiating tissue types.
Our findings demonstrate that models of order-preserved signals perform statistically significantly better (85% accuracy) in tissue characterization compared to models of order-altered signals (62% accuracy). The performance degrades as more changes in signal order are introduced. Additionally, models trained on shorter sequences perform as accurately as models of longer sequences.
The work presented here strongly indicates that temporal order has substantial impact on TeUS performance; thus, it plays a significant role in conveying tissue-specific information. Furthermore, shorter TeUS signals can relay sufficient information to accurately distinguish between tissue types.
Understanding the impact of TeUS properties facilitates the process of its adopting in diagnostic procedures and provides insights on improving its acquisition.
时增强超声(TeUS)是一种新的基于超声的成像技术,提供组织特异性信息。最近的研究表明,TeUS 在提高前列腺癌诊断中的组织特征方面具有潜力。我们研究了 TeUS 的时间特性——时间顺序和长度,并提出了一个新的框架来评估它们对组织信息的影响。
我们利用隐马尔可夫模型(HMM)的概率建模方法,从 9 名患者的 TeUS 信号中捕获恶性和良性组织的时间特征。我们将良性和恶性组织的信号(分别为 284 和 286 个信号)按原始时间顺序以及顺序排列进行建模。然后,我们使用 Kullback-Leibler 散度比较得到的模型,并评估它们在特征描述方面的性能差异。此外,我们使用不同时长的 TeUS 信号训练 HMM,并比较它们在区分组织类型时的模型性能。
我们的研究结果表明,在组织特征描述方面,顺序保持信号的模型表现明显优于顺序改变信号的模型(85%的准确率对 62%的准确率)。随着信号顺序变化的增加,性能会下降。此外,训练序列较短的模型与训练序列较长的模型具有相同的准确性。
这里介绍的工作强烈表明,时间顺序对 TeUS 性能有重大影响;因此,它在传递组织特异性信息方面起着重要作用。此外,较短的 TeUS 信号可以传递足够的信息,从而准确地区分组织类型。
了解 TeUS 特性的影响有助于其在诊断程序中的采用,并为提高其采集提供了思路。