Suppr超能文献

随机序列建模:通过时变超声提高前列腺癌诊断。

Stochastic Sequential Modeling: Toward Improved Prostate Cancer Diagnosis Through Temporal-Ultrasound.

机构信息

School of Computing, Queen's University, Kingston, ON, K7L 2N8, Canada.

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

出版信息

Ann Biomed Eng. 2021 Feb;49(2):573-584. doi: 10.1007/s10439-020-02585-y. Epub 2020 Aug 10.

Abstract

Prostate cancer (PCa) is a common, serious form of cancer in men that is still prevalent despite ongoing developments in diagnostic oncology. Current detection methods lead to high rates of inaccurate diagnosis. We present a method to directly model and exploit temporal aspects of temporal enhanced ultrasound (TeUS) for tissue characterization, which improves malignancy prediction. We employ a probabilistic-temporal framework, namely, hidden Markov models (HMMs), for modeling TeUS data obtained from PCa patients. We distinguish malignant from benign tissue by comparing the respective log-likelihood estimates generated by the HMMs. We analyze 1100 TeUS signals acquired from 12 patients. Our results show improved malignancy identification compared to previous results, demonstrating over 85% accuracy and AUC of 0.95. Incorporating temporal information directly into the models leads to improved tissue differentiation in PCa. We expect our method to generalize and be applied to other types of cancer in which temporal-ultrasound can be recorded.

摘要

前列腺癌(PCa)是一种常见且严重的男性癌症,尽管在肿瘤诊断学方面不断取得进展,但它仍然普遍存在。目前的检测方法导致误诊率很高。我们提出了一种直接对时间增强超声(TeUS)的时间方面进行建模和利用的方法,以改善恶性肿瘤的预测。我们采用概率时间框架,即隐马尔可夫模型(HMM),对来自 PCa 患者的 TeUS 数据进行建模。我们通过比较 HMM 生成的各自对数似然估计来区分恶性和良性组织。我们分析了从 12 名患者中获得的 1100 个 TeUS 信号。我们的结果表明与之前的结果相比,恶性肿瘤的识别得到了改善,准确率超过 85%,AUC 为 0.95。直接将时间信息纳入模型可以改善 PCa 中的组织分化。我们预计我们的方法可以推广并应用于可以记录时间超声的其他类型的癌症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a4e/7851024/401e6f1f3e80/10439_2020_2585_Fig1_HTML.jpg

相似文献

1
Stochastic Sequential Modeling: Toward Improved Prostate Cancer Diagnosis Through Temporal-Ultrasound.
Ann Biomed Eng. 2021 Feb;49(2):573-584. doi: 10.1007/s10439-020-02585-y. Epub 2020 Aug 10.
2
Stochastic Modeling of Temporal Enhanced Ultrasound: Impact of Temporal Properties on Prostate Cancer Characterization.
IEEE Trans Biomed Eng. 2018 Aug;65(8):1798-1809. doi: 10.1109/TBME.2017.2778007. Epub 2017 Nov 27.
3
Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies.
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):1009-1016. doi: 10.1007/s11548-019-01950-0. Epub 2019 Mar 23.
5
Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound.
IEEE Trans Med Imaging. 2018 Dec;37(12):2695-2703. doi: 10.1109/TMI.2018.2849959. Epub 2018 Jun 25.
6
Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection.
Int J Comput Assist Radiol Surg. 2017 Jul;12(7):1111-1121. doi: 10.1007/s11548-017-1573-x. Epub 2017 Mar 27.
7
Investigation of Physical Phenomena Underlying Temporal-Enhanced Ultrasound as a New Diagnostic Imaging Technique: Theory and Simulations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Mar;65(3):400-410. doi: 10.1109/TUFFC.2017.2785230.
9
Imaging in prostate cancer diagnosis: present role and future perspectives.
Urol Int. 2011;86(4):373-82. doi: 10.1159/000324515. Epub 2011 Mar 2.

引用本文的文献

本文引用的文献

1
Stochastic Modeling of Temporal Enhanced Ultrasound: Impact of Temporal Properties on Prostate Cancer Characterization.
IEEE Trans Biomed Eng. 2018 Aug;65(8):1798-1809. doi: 10.1109/TBME.2017.2778007. Epub 2017 Nov 27.
2
Investigation of Physical Phenomena Underlying Temporal-Enhanced Ultrasound as a New Diagnostic Imaging Technique: Theory and Simulations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Mar;65(3):400-410. doi: 10.1109/TUFFC.2017.2785230.
3
Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study.
Int J Comput Assist Radiol Surg. 2016 Jun;11(6):947-56. doi: 10.1007/s11548-016-1395-2. Epub 2016 Apr 8.
4
Computer-Aided Prostate Cancer Detection Using Ultrasound RF Time Series: In Vivo Feasibility Study.
IEEE Trans Med Imaging. 2015 Nov;34(11):2248-57. doi: 10.1109/TMI.2015.2427739. Epub 2015 Apr 29.
5
Overdiagnosis and overtreatment of prostate cancer.
Eur Urol. 2014 Jun;65(6):1046-55. doi: 10.1016/j.eururo.2013.12.062. Epub 2014 Jan 9.
6
Early detection of prostate cancer: AUA Guideline.
J Urol. 2013 Aug;190(2):419-26. doi: 10.1016/j.juro.2013.04.119. Epub 2013 May 6.
8
The complexity of prostate cancer: genomic alterations and heterogeneity.
Nat Rev Urol. 2012 Nov;9(11):652-64. doi: 10.1038/nrurol.2012.185.
9
Registration of prostate histology images to ex vivo MR images via strand-shaped fiducials.
J Magn Reson Imaging. 2012 Dec;36(6):1402-12. doi: 10.1002/jmri.23767. Epub 2012 Jul 31.
10
Core length in prostate biopsy: size matters.
J Urol. 2012 Jun;187(6):2051-5. doi: 10.1016/j.juro.2012.01.075. Epub 2012 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验