School of Computing, Queen's University, Kingston, ON, K7L 2N8, Canada.
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.
Ann Biomed Eng. 2021 Feb;49(2):573-584. doi: 10.1007/s10439-020-02585-y. Epub 2020 Aug 10.
Prostate cancer (PCa) is a common, serious form of cancer in men that is still prevalent despite ongoing developments in diagnostic oncology. Current detection methods lead to high rates of inaccurate diagnosis. We present a method to directly model and exploit temporal aspects of temporal enhanced ultrasound (TeUS) for tissue characterization, which improves malignancy prediction. We employ a probabilistic-temporal framework, namely, hidden Markov models (HMMs), for modeling TeUS data obtained from PCa patients. We distinguish malignant from benign tissue by comparing the respective log-likelihood estimates generated by the HMMs. We analyze 1100 TeUS signals acquired from 12 patients. Our results show improved malignancy identification compared to previous results, demonstrating over 85% accuracy and AUC of 0.95. Incorporating temporal information directly into the models leads to improved tissue differentiation in PCa. We expect our method to generalize and be applied to other types of cancer in which temporal-ultrasound can be recorded.
前列腺癌(PCa)是一种常见且严重的男性癌症,尽管在肿瘤诊断学方面不断取得进展,但它仍然普遍存在。目前的检测方法导致误诊率很高。我们提出了一种直接对时间增强超声(TeUS)的时间方面进行建模和利用的方法,以改善恶性肿瘤的预测。我们采用概率时间框架,即隐马尔可夫模型(HMM),对来自 PCa 患者的 TeUS 数据进行建模。我们通过比较 HMM 生成的各自对数似然估计来区分恶性和良性组织。我们分析了从 12 名患者中获得的 1100 个 TeUS 信号。我们的结果表明与之前的结果相比,恶性肿瘤的识别得到了改善,准确率超过 85%,AUC 为 0.95。直接将时间信息纳入模型可以改善 PCa 中的组织分化。我们预计我们的方法可以推广并应用于可以记录时间超声的其他类型的癌症。