Suppr超能文献

深度递归神经网络在前列腺癌检测中的应用:增强超声时间序列分析

Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound.

出版信息

IEEE Trans Med Imaging. 2018 Dec;37(12):2695-2703. doi: 10.1109/TMI.2018.2849959. Epub 2018 Jun 25.

Abstract

Temporal enhanced ultrasound (TeUS), comprising the analysis of variations in backscattered signals from a tissue over a sequence of ultrasound frames, has been previously proposed as a new paradigm for tissue characterization. In this paper, we propose to use deep recurrent neural networks (RNN) to explicitly model the temporal information in TeUS. By investigating several RNN models, we demonstrate that long short-term memory (LSTM) networks achieve the highest accuracy in separating cancer from benign tissue in the prostate. We also present algorithms for in-depth analysis of LSTM networks. Our in vivo study includes data from 255 prostate biopsy cores of 157 patients. We achieve area under the curve, sensitivity, specificity, and accuracy of 0.96, 0.76, 0.98, and 0.93, respectively. Our result suggests that temporal modeling of TeUS using RNN can significantly improve cancer detection accuracy over previously presented works.

摘要

时频超声(TeUS),包括对一系列超声帧中来自组织的背向散射信号变化的分析,之前已被提出作为一种新的组织特征化范例。在本文中,我们提出使用深度递归神经网络(RNN)来明确地对 TeUS 中的时间信息进行建模。通过研究几种 RNN 模型,我们证明长短期记忆(LSTM)网络在区分前列腺中的癌症与良性组织方面实现了最高的准确性。我们还提出了用于深入分析 LSTM 网络的算法。我们的体内研究包括来自 157 名患者的 255 个前列腺活检样本的数据。我们分别实现了 0.96、0.76、0.98 和 0.93 的曲线下面积、敏感性、特异性和准确性。我们的结果表明,使用 RNN 对 TeUS 进行时间建模可以显著提高癌症检测的准确性,优于之前提出的方法。

相似文献

4
Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.实时系统用于增强超声引导下的前列腺活检。
Int J Comput Assist Radiol Surg. 2018 Aug;13(8):1201-1209. doi: 10.1007/s11548-018-1749-z. Epub 2018 Mar 27.
9
A Deep Learning Approach for Targeted Contrast-Enhanced Ultrasound Based Prostate Cancer Detection.基于深度学习的靶向超声造影前列腺癌检测方法。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Nov-Dec;16(6):1794-1801. doi: 10.1109/TCBB.2018.2835444. Epub 2018 May 11.

引用本文的文献

7
Deep Learning for Medical Image-Based Cancer Diagnosis.基于医学图像的癌症诊断的深度学习
Cancers (Basel). 2023 Jul 13;15(14):3608. doi: 10.3390/cancers15143608.
10
A review of artificial intelligence in prostate cancer detection on imaging.关于人工智能在前列腺癌影像检测中的综述。
Ther Adv Urol. 2022 Oct 10;14:17562872221128791. doi: 10.1177/17562872221128791. eCollection 2022 Jan-Dec.

本文引用的文献

2
Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.实时系统用于增强超声引导下的前列腺活检。
Int J Comput Assist Radiol Surg. 2018 Aug;13(8):1201-1209. doi: 10.1007/s11548-018-1749-z. Epub 2018 Mar 27.
4
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验