Suppr超能文献

帕金森病步态动力学的张量分解。

Tensor Decomposition of Gait Dynamics in Parkinson's Disease.

出版信息

IEEE Trans Biomed Eng. 2018 Aug;65(8):1820-1827. doi: 10.1109/TBME.2017.2779884. Epub 2017 Dec 4.

Abstract

OBJECTIVE

The study of gait in Parkinson's disease is important because it can provide insights into the complex neural system and physiological behaviors of the disease, of which understanding can help improve treatment and lead to effective developments of alternative neural rehabilitation programs. This paper aims to introduce an effective computational method for multichannel or multisensor data analysis of gait dynamics in Parkinson's disease.

METHOD

A model of tensor decomposition, which is a generalization of matrix-based analysis for higher dimensional analysis, is designed for differentiating multisensor time series of gait force between Parkinson's disease and healthy control cohorts.

RESULTS

Experimental results obtained from the tensor decomposition model using a PhysioNet database show several discriminating characteristics of the two cohorts, and the achievement of 100% sensitivity and 100% specificity under various cross validations.

CONCLUSION

Tensor decomposition is a useful method for the modeling and analysis of multisensor time series in patients with Parkinson's disease.

SIGNIFICANCE

Tensor-decomposition factors can be potentially used as physiological markers for Parkinson's disease, and effective features for machine learning that can provide early prediction of the disease progression.

摘要

目的

研究帕金森病患者的步态非常重要,因为它可以深入了解疾病复杂的神经系统和生理行为,有助于改善治疗效果,并为替代神经康复计划的有效开发提供依据。本文旨在介绍一种用于帕金森病步态动力学多通道或多传感器数据分析的有效计算方法。

方法

设计了张量分解模型,它是一种针对更高维分析的基于矩阵分析的推广,用于区分帕金森病患者和健康对照组的步态力多传感器时间序列。

结果

使用 PhysioNet 数据库从张量分解模型获得的实验结果显示了两组之间的几个区分特征,并且在各种交叉验证下实现了 100%的灵敏度和 100%的特异性。

结论

张量分解是对帕金森病患者多传感器时间序列进行建模和分析的一种有用方法。

意义

张量分解因子可作为帕金森病的生理标志物,也是机器学习的有效特征,可以提供疾病进展的早期预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验