Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone Rome, Rome, Italy.
Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.
PLoS One. 2021 Feb 19;16(2):e0244396. doi: 10.1371/journal.pone.0244396. eCollection 2021.
Gait deficits are debilitating in people with Parkinson's disease (PwPD), which inevitably deteriorate over time. Gait analysis is a valuable method to assess disease-specific gait patterns and their relationship with the clinical features and progression of the disease.
Our study aimed to i) develop an automated diagnostic algorithm based on machine-learning techniques (artificial neural networks [ANNs]) to classify the gait deficits of PwPD according to disease progression in the Hoehn and Yahr (H-Y) staging system, and ii) identify a minimum set of gait classifiers.
We evaluated 76 PwPD (H-Y stage 1-4) and 67 healthy controls (HCs) by computerized gait analysis. We computed the time-distance parameters and the ranges of angular motion (RoMs) of the hip, knee, ankle, trunk, and pelvis. Principal component analysis was used to define a subset of features including all gait variables. An ANN approach was used to identify gait deficits according to the H-Y stage.
We identified a combination of a small number of features that distinguished PwPDs from HCs (one combination of two features: knee and trunk rotation RoMs) and identified the gait patterns between different H-Y stages (two combinations of four features: walking speed and hip, knee, and ankle RoMs; walking speed and hip, knee, and trunk rotation RoMs).
The ANN approach enabled automated diagnosis of gait deficits in several symptomatic stages of Parkinson's disease. These results will inspire future studies to test the utility of gait classifiers for the evaluation of treatments that could modify disease progression.
步态缺陷使帕金森病(PD)患者(PwPD)身体虚弱,且随着时间的推移,步态缺陷不可避免地会恶化。步态分析是评估特定疾病步态模式及其与疾病临床特征和进展之间关系的一种有价值的方法。
我们的研究旨在 i)开发一种基于机器学习技术(人工神经网络[ANNs])的自动诊断算法,根据 Hoehn 和 Yahr(H-Y)分期系统中疾病的进展对 PwPD 的步态缺陷进行分类,以及 ii)确定最小的步态分类器集。
我们通过计算机化步态分析评估了 76 名 PwPD(H-Y 分期 1-4)和 67 名健康对照者(HCs)。我们计算了时间-距离参数和髋关节、膝关节、踝关节、躯干和骨盆的角度运动范围(RoMs)。主成分分析用于定义包括所有步态变量的特征子集。ANN 方法用于根据 H-Y 阶段识别步态缺陷。
我们确定了一个能够将 PwPD 与 HCs 区分开来的少数特征的组合(膝关节和躯干旋转 RoM 的一个特征组合),并识别了不同 H-Y 阶段之间的步态模式(步行速度和髋关节、膝关节和踝关节 RoM 的两个特征组合;步行速度和髋关节、膝关节和躯干旋转 RoM 的两个特征组合)。
ANN 方法能够自动诊断帕金森病多个症状阶段的步态缺陷。这些结果将激发未来的研究,以测试步态分类器用于评估可能改变疾病进展的治疗方法的效用。