Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, 31952, Saudi Arabia.
Sci Rep. 2021 Mar 25;11(1):6936. doi: 10.1038/s41598-021-86432-7.
Automated analysis of physiological time series is utilized for many clinical applications in medicine and life sciences. Long short-term memory (LSTM) is a deep recurrent neural network architecture used for classification of time-series data. Here time-frequency and time-space properties of time series are introduced as a robust tool for LSTM processing of long sequential data in physiology. Based on classification results obtained from two databases of sensor-induced physiological signals, the proposed approach has the potential for (1) achieving very high classification accuracy, (2) saving tremendous time for data learning, and (3) being cost-effective and user-comfortable for clinical trials by reducing multiple wearable sensors for data recording.
生理时间序列的自动分析被广泛应用于医学和生命科学领域的许多临床应用中。长短期记忆(LSTM)是一种深度递归神经网络架构,用于分类时间序列数据。在这里,时间-频率和时间-空间特性被引入作为 LSTM 处理生理学中长序列数据的强大工具。基于从两个传感器诱导的生理信号数据库中获得的分类结果,所提出的方法具有以下潜力:(1)实现非常高的分类准确性;(2)为数据学习节省大量时间;(3)通过减少用于数据记录的多个可穿戴传感器,降低成本并为临床试验提供用户舒适度。