Suppr超能文献

融合动作的马尔可夫随机场优化。

Fusion moves for Markov random field optimization.

机构信息

Microsoft Research, Cambridge, UK.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Aug;32(8):1392-405. doi: 10.1109/TPAMI.2009.143.

Abstract

The efficient application of graph cuts to Markov Random Fields (MRFs) with multiple discrete or continuous labels remains an open question. In this paper, we demonstrate one possible way of achieving this by using graph cuts to combine pairs of suboptimal labelings or solutions. We call this combination process the fusion move. By employing recently developed graph-cut-based algorithms (so-called QPBO-graph cut), the fusion move can efficiently combine two proposal labelings in a theoretically sound way, which is in practice often globally optimal. We demonstrate that fusion moves generalize many previous graph-cut approaches, which allows them to be used as building blocks within a broader variety of optimization schemes than were considered before. In particular, we propose new optimization schemes for computer vision MRFs with applications to image restoration, stereo, and optical flow, among others. Within these schemes the fusion moves are used 1) for the parallelization of MRF optimization into several threads, 2) for fast MRF optimization by combining cheap-to-compute solutions, and 3) for the optimization of highly nonconvex continuous-labeled MRFs with 2D labels. Our final example is a nonvision MRF concerned with cartographic label placement, where fusion moves can be used to improve the performance of a standard inference method (loopy belief propagation).

摘要

高效地将图割应用于具有多个离散或连续标签的马尔可夫随机场(MRF)仍然是一个悬而未决的问题。在本文中,我们通过使用图割将两个次优的标签或解决方案组合来展示实现这一目标的一种可能方法。我们将这个组合过程称为融合操作。通过使用最近开发的基于图割的算法(所谓的 QPBO 图割),融合操作可以以理论上合理的方式有效地组合两个提议的标签,而在实践中通常是全局最优的。我们证明了融合操作可以推广许多以前的图割方法,这使得它们可以作为构建块,应用于比以前考虑的更广泛的各种优化方案中。特别是,我们提出了用于计算机视觉 MRF 的新的优化方案,应用于图像恢复、立体视觉和光流等。在这些方案中,融合操作用于 1)将 MRF 优化并行化为多个线程,2)通过组合廉价计算的解决方案来快速优化 MRF,以及 3)优化具有二维标签的高度非凸连续标签 MRF。我们的最后一个例子是非视觉 MRF,涉及地图标签放置,其中融合操作可以用于改进标准推理方法(循环置信传播)的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验