Li Chongxuan, Zhu Jun, Zhang Bo
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2762-2775. doi: 10.1109/TPAMI.2017.2766142. Epub 2017 Oct 24.
Deep generative models (DGMs) can effectively capture the underlying distributions of complex data by learning multilayered representations and performing inference. However, it is relatively insufficient to boost the discriminative ability of DGMs. This paper presents max-margin deep generative models (mmDGMs) and a class-conditional variant (mmDCGMs), which explore the strongly discriminative principle of max-margin learning to improve the predictive performance of DGMs in both supervised and semi-supervised learning, while retaining the generative capability. In semi-supervised learning, we use the predictions of a max-margin classifier as the missing labels instead of performing full posterior inference for efficiency; we also introduce additional max-margin and label-balance regularization terms of unlabeled data for effectiveness. We develop an efficient doubly stochastic subgradient algorithm for the piecewise linear objectives in different settings. Empirical results on various datasets demonstrate that: (1) max-margin learning can significantly improve the prediction performance of DGMs and meanwhile retain the generative ability; (2) in supervised learning, mmDGMs are competitive to the best fully discriminative networks when employing convolutional neural networks as the generative and recognition models; and (3) in semi-supervised learning, mmDCGMs can perform efficient inference and achieve state-of-the-art classification results on several benchmarks.
深度生成模型(DGM)可以通过学习多层表示并进行推理来有效地捕捉复杂数据的潜在分布。然而,提高DGM的判别能力相对不足。本文提出了最大间隔深度生成模型(mmDGM)和一种类条件变体(mmDCGM),它们探索最大间隔学习的强判别原则,以在保留生成能力的同时,提高DGM在监督学习和半监督学习中的预测性能。在半监督学习中,为了提高效率,我们使用最大间隔分类器的预测作为缺失标签,而不是执行完整的后验推理;我们还引入了未标记数据的额外最大间隔和标签平衡正则化项以提高有效性。我们针对不同设置下的分段线性目标开发了一种高效的双重随机次梯度算法。在各种数据集上的实证结果表明:(1)最大间隔学习可以显著提高DGM的预测性能,同时保留生成能力;(2)在监督学习中,当使用卷积神经网络作为生成模型和识别模型时,mmDGM与最佳的完全判别网络具有竞争力;(3)在半监督学习中,mmDCGM可以执行高效推理,并在几个基准测试中取得领先的分类结果。