Suppr超能文献

套索筛选规则集。

Ensembles of Lasso Screening Rules.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Dec;40(12):2841-2852. doi: 10.1109/TPAMI.2017.2765321. Epub 2017 Nov 24.

Abstract

In order to solve large-scale lasso problems, screening algorithms have been developed that discard features with zero coefficients based on a computationally efficient screening rule. Most existing screening rules were developed from a spherical constraint and half-space constraints on a dual optimal solution. However, existing rules admit at most two half-space constraints due to the computational cost incurred by the half-spaces, even though additional constraints may be useful to discard more features. In this paper, we present AdaScreen, an adaptive lasso screening rule ensemble, which allows to combine any one sphere with multiple half-space constraints on a dual optimal solution. Thanks to geometrical considerations that lead to a simple closed form solution for AdaScreen, we can incorporate multiple half-space constraints at small computational cost. In our experiments, we show that AdaScreen with multiple half-space constraints simultaneously improves screening performance and speeds up lasso solvers.

摘要

为了解决大规模的套索问题,已经开发了筛选算法,这些算法根据计算效率高的筛选规则丢弃具有零系数的特征。大多数现有的筛选规则都是从球形约束和对偶最优解的半空间约束中发展出来的。然而,由于半空间会产生计算成本,因此现有的规则最多只能允许两个半空间约束,即使添加更多的约束可能有助于进一步剔除更多的特征。在本文中,我们提出了 AdaScreen,这是一种自适应套索筛选规则集合,它允许将任何一个球体与对偶最优解上的多个半空间约束相结合。由于几何方面的考虑,AdaScreen 可以得到一个简单的闭式解,因此我们可以以较小的计算成本合并多个半空间约束。在我们的实验中,我们表明同时使用多个半空间约束的 AdaScreen 可以提高筛选性能并加快套索求解器的速度。

相似文献

1
Ensembles of Lasso Screening Rules.
IEEE Trans Pattern Anal Mach Intell. 2018 Dec;40(12):2841-2852. doi: 10.1109/TPAMI.2017.2765321. Epub 2017 Nov 24.
2
Fused Lasso Screening Rules via the Monotonicity of Subdifferentials.
IEEE Trans Pattern Anal Mach Intell. 2015 Sep;37(9):1806-20. doi: 10.1109/TPAMI.2014.2388203.
3
l-Norm Quantile Regression Screening Rule via the Dual Circumscribed Sphere.
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6254-6263. doi: 10.1109/TPAMI.2021.3087160. Epub 2022 Sep 14.
4
A Safe Feature Elimination Rule for L-Regularized Logistic Regression.
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4544-4554. doi: 10.1109/TPAMI.2021.3071138. Epub 2022 Aug 4.
5
Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.
IEEE Trans Med Imaging. 2016 May;35(5):1217-1228. doi: 10.1109/TMI.2016.2538802. Epub 2016 Mar 7.
6
Manifold Adaptive Label Propagation for Face Clustering.
IEEE Trans Cybern. 2015 Aug;45(8):1681-91. doi: 10.1109/TCYB.2014.2358592. Epub 2014 Sep 30.
7
A Functional Regression Approach to Facial Landmark Tracking.
IEEE Trans Pattern Anal Mach Intell. 2018 Sep;40(9):2037-2050. doi: 10.1109/TPAMI.2017.2745568. Epub 2017 Aug 29.
8
A sequential solution for anisotropic total variation image denoising with interval constraints.
Phys Med Biol. 2017 Sep 1;62(18):N428-N435. doi: 10.1088/1361-6560/aa837d.
9
Manifold Kernel Sparse Representation of Symmetric Positive-Definite Matrices and Its Applications.
IEEE Trans Image Process. 2015 Nov;24(11):3729-41. doi: 10.1109/TIP.2015.2451953. Epub 2015 Jul 1.
10
Reconstruction of irregularly-sampled volumetric data in efficient box spline spaces.
IEEE Trans Med Imaging. 2012 Jul;31(7):1472-80. doi: 10.1109/TMI.2012.2190616. Epub 2012 Mar 12.

引用本文的文献

1
Prediction of malignancy risk in Bethesda III nodules: development and validation of multiple machine learning models.
Front Endocrinol (Lausanne). 2025 Aug 29;16:1655828. doi: 10.3389/fendo.2025.1655828. eCollection 2025.
2
Postpartum depression risk prediction using explainable machine learning algorithms.
Front Med (Lausanne). 2025 Aug 7;12:1565374. doi: 10.3389/fmed.2025.1565374. eCollection 2025.
6
Developing and validating a machine learning model to predict multidrug-resistant -related septic shock.
Front Immunol. 2025 Jan 10;15:1539465. doi: 10.3389/fimmu.2024.1539465. eCollection 2024.
9
Construction of an Early Alert System for Intradialytic Hypotension before Initiating Hemodialysis Based on Machine Learning.
Kidney Dis (Basel). 2023 Jun 23;9(5):433-442. doi: 10.1159/000531619. eCollection 2023 Oct.

本文引用的文献

1
A network-driven approach for genome-wide association mapping.
Bioinformatics. 2016 Jun 15;32(12):i164-i173. doi: 10.1093/bioinformatics/btw270.
2
Screening Tests for Lasso Problems.
IEEE Trans Pattern Anal Mach Intell. 2017 May;39(5):1008-1027. doi: 10.1109/TPAMI.2016.2568185. Epub 2016 May 12.
3
Strong rules for discarding predictors in lasso-type problems.
J R Stat Soc Series B Stat Methodol. 2012 Mar;74(2):245-266. doi: 10.1111/j.1467-9868.2011.01004.x.
6
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models.
J Am Stat Assoc. 2011 Jun;106(494):544-557. doi: 10.1198/jasa.2011.tm09779.
7
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
8
A genome-wide association study of global gene expression.
Nat Genet. 2007 Oct;39(10):1202-7. doi: 10.1038/ng2109. Epub 2007 Sep 16.
9
The Human Genome Project: lessons from large-scale biology.
Science. 2003 Apr 11;300(5617):286-90. doi: 10.1126/science.1084564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验