Suppr超能文献

具有局部约束的边缘化去噪字典学习。

Marginalized Denoising Dictionary Learning With Locality Constraint.

出版信息

IEEE Trans Image Process. 2018 Jan;27(1):500-510. doi: 10.1109/TIP.2017.2764622. Epub 2017 Oct 20.

Abstract

Learning good representation for images is always a hot topic in machine learning and pattern recognition fields. Among the numerous algorithms, dictionary learning is a well-known strategy for effective feature extraction. Recently, more discriminative sub-dictionaries have been built by Fisher discriminative dictionary learning with specific class labels. Different types of constraints, such as sparsity, low rankness, and locality, are also exploited to make use of global and local information. On the other hand, as the basic building block of deep structure, the auto-encoder has demonstrated its promising performance in extracting new feature representation. To this end, we develop a unified feature learning framework by incorporating the marginalized denoising auto-encoder into a locality-constrained dictionary learning scheme, named marginalized denoising dictionary learning. Overall, we deploy low-rank constraint on each sub-dictionary and locality constraint instead of sparsity on coefficients, in order to learn a more concise and pure feature spaces meanwhile inheriting the discrimination from sub-dictionary learning. Finally, we evaluate our algorithm on several face and object data sets. Experimental results have demonstrated the effectiveness and efficiency of our proposed algorithm by comparing with several state-of-the-art methods.

摘要

学习图像的良好表示形式一直是机器学习和模式识别领域的热门话题。在众多算法中,字典学习是一种有效的特征提取策略。最近,Fisher 判别式字典学习利用特定的类别标签构建了更具判别力的子字典。还利用了各种类型的约束,如稀疏性、低秩性和局部性,以利用全局和局部信息。另一方面,作为深度结构的基本构建块,自动编码器在提取新的特征表示方面表现出了很有前途的性能。为此,我们将边缘化去噪自动编码器纳入局部约束字典学习方案中,提出了一种统一的特征学习框架,命名为边缘化去噪字典学习。总的来说,我们对每个子字典施加低秩约束,对系数施加局部约束,而不是稀疏性约束,以便在继承子字典学习判别力的同时,学习更简洁、更纯粹的特征空间。最后,我们在几个人脸和目标数据集上评估了我们的算法。通过与几种最先进的方法进行比较,实验结果证明了我们提出的算法的有效性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验