Suppr超能文献

用于图像识别的具有局部性约束的松弛块对角字典对学习

Relaxed Block-Diagonal Dictionary Pair Learning With Locality Constraint for Image Recognition.

作者信息

Chen Zhe, Wu Xiao-Jun, Kittler Josef

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3645-3659. doi: 10.1109/TNNLS.2021.3053941. Epub 2022 Aug 3.

Abstract

We propose a novel structured analysis-synthesis dictionary pair learning method for efficient representation and image classification, referred to as relaxed block-diagonal dictionary pair learning with a locality constraint (RBD-DPL). RBD-DPL aims to learn relaxed block-diagonal representations of the input data to enhance the discriminability of both analysis and synthesis dictionaries by dynamically optimizing the block-diagonal components of representation, while the off-block-diagonal counterparts are set to zero. In this way, the learned synthesis subdictionary is allowed to be more flexible in reconstructing the samples from the same class, and the analysis dictionary effectively transforms the original samples into a relaxed coefficient subspace, which is closely associated with the label information. Besides, we incorporate a locality-constraint term as a complement of the relaxation learning to enhance the locality of the analytical encoding so that the learned representation exhibits high intraclass similarity. A linear classifier is trained in the learned relaxed representation space for consistent classification. RBD-DPL is computationally efficient because it avoids both the use of class-specific complementary data matrices to learn discriminative analysis dictionary, as well as the time-consuming l/l -norm sparse reconstruction process. The experimental results demonstrate that our RBD-DPL achieves at least comparable or better recognition performance than the state-of-the-art algorithms. Moreover, both the training and testing time are significantly reduced, which verifies the efficiency of our method. The MATLAB code of the proposed RBD-DPL is available at https://github.com/chenzhe207/RBD-DPL.

摘要

我们提出了一种用于高效表示和图像分类的新颖结构化分析 - 合成字典对学习方法,称为带局部性约束的松弛块对角字典对学习(RBD - DPL)。RBD - DPL旨在学习输入数据的松弛块对角表示,通过动态优化表示的块对角分量来增强分析字典和合成字典的可辨别性,同时将非块对角部分设置为零。通过这种方式,学习到的合成子字典在从同一类重建样本时可以更加灵活,并且分析字典有效地将原始样本变换到一个与标签信息紧密相关的松弛系数子空间。此外,我们引入一个局部性约束项作为松弛学习的补充,以增强分析编码的局部性,使得学习到的表示具有高类内相似度。在学习到的松弛表示空间中训练一个线性分类器以进行一致性分类。RBD - DPL计算效率高,因为它既避免了使用特定类别的互补数据矩阵来学习判别性分析字典,也避免了耗时的l/l -范数稀疏重建过程。实验结果表明,我们的RBD - DPL与现有最先进算法相比至少具有相当或更好的识别性能。此外,训练和测试时间都显著减少,这验证了我们方法的有效性。所提出的RBD - DPL的MATLAB代码可在https://github.com/chenzhe207/RBD - DPL获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验