IEEE J Biomed Health Inform. 2018 Sep;22(5):1653-1661. doi: 10.1109/JBHI.2017.2785682. Epub 2017 Dec 20.
This paper proposes a comprehensive investigation of the automatic classification of functional gait disorders (GDs) based solely on ground reaction force (GRF) measurements. The aim of this study is twofold: first, to investigate the suitability of the state-of-the-art GRF parameterization techniques (representations) for the discrimination of functional GDs; and second, to provide a first performance baseline for the automated classification of functional GDs for a large-scale dataset. The utilized database comprises GRF measurements from 279 patients with GDs and data from 161 healthy controls (N). Patients were manually classified into four classes with different functional impairments associated with the "hip", "knee", "ankle", and "calcaneus". Different parameterizations are investigated: GRF parameters, global principal component analysis (PCA) based representations, and a combined representation applying PCA on GRF parameters. The discriminative power of each parameterization for different classes is investigated by linear discriminant analysis. Based on this analysis, two classification experiments are pursued: distinction between healthy and impaired gait (N versus GD) and multiclass classification between healthy gait and all four GD classes. Experiments show promising results and reveal among others that several factors, such as imbalanced class cardinalities and varying numbers of measurement sessions per patient, have a strong impact on the classification accuracy and therefore need to be taken into account. The results represent a promising first step toward the automated classification of GDs and a first performance baseline for future developments in this direction.
本文提出了一种基于地面反力(GRF)测量的全面研究,用于对功能性步态障碍(GDs)的自动分类。本研究有两个目的:第一,研究最先进的 GRF 参数化技术(表示)在区分功能性 GDs 方面的适用性;第二,为基于大规模数据集的功能性 GDs 的自动分类提供初步的性能基准。所使用的数据库包括 279 名 GDs 患者的 GRF 测量数据和 161 名健康对照者(N)的数据。患者被手动分为四类,分别为与“髋关节”、“膝关节”、“踝关节”和“跟骨”相关的不同功能障碍。研究了不同的参数化方法:GRF 参数、基于全局主成分分析(PCA)的表示以及将 PCA 应用于 GRF 参数的组合表示。通过线性判别分析研究了每种参数化方法对不同类别的区分能力。基于该分析,进行了两项分类实验:健康和受损步态之间的区分(N 与 GD)以及健康步态和所有四个 GD 类之间的多类分类。实验结果表明了具有前景的结果,揭示了一些因素,如不平衡的类别基数和每个患者的测量次数不同,对分类准确性有很强的影响,因此需要加以考虑。结果代表了在自动分类 GDs 方面迈出的有希望的第一步,也是未来在这一方向上发展的初步性能基准。