Suppr超能文献

概率神经网络、支持向量机和逻辑回归在评估帕金森病患者丘脑底核刺激对步态中地面反力影响的比较。

Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait.

机构信息

Biomedical Engineering Program, Federal University of Rio de Janeiro, COPPE, P.O. Box 68510, 21941-972, Rio de Janeiro, RJ, Brazil.

出版信息

J Biomech. 2010 Mar 3;43(4):720-6. doi: 10.1016/j.jbiomech.2009.10.018. Epub 2009 Nov 14.

Abstract

Deep brain stimulation of the subthalamic nucleus (DBS-STN) is an approved treatment for advanced Parkinson disease (PD) patients; however, there is a need to further evaluate its effect on gait. This study compares logistic regression (LR), probabilistic neural network (PNN) and support vector machine (SVM) classifiers for discriminating between normal and PD subjects in assessing the effects of DBS-STN on ground reaction force (GRF) with and without medication. Gait analysis of 45 subjects (30 normal and 15 PD subjects who underwent bilateral DBS-STN) was performed. PD subjects were assessed under four test conditions: without treatment (mof-sof), with stimulation alone (mof-son), with medication alone (mon-sof), and with medication and stimulation (mon-son). Principal component (PC) analysis was applied to the three components of GRF separately, where six PC scores from vertical, one from anterior-posterior and one from medial-lateral were chosen by the broken stick test. Stepwise LR analysis employed the first two and fifth vertical PC scores as input variables. Using the bootstrap approach to compare model performances for classifying GRF patterns from normal and untreated PD subjects, the first three and the fifth vertical PCs were attained as SVM input variables, while the same ones plus the first anterior-posterior were selected as PNN input variables. PNN performed better than LR and SVM according to area under the receiver operating characteristic curve and the negative likelihood ratio. When evaluating treatment effects, the classifiers indicated that DBS-STN alone was more effective than medication alone, but the greatest improvements occurred with both treatments together.

摘要

深部脑刺激丘脑底核(DBS-STN)是一种已被批准用于治疗晚期帕金森病(PD)患者的方法;然而,需要进一步评估其对步态的影响。本研究比较了逻辑回归(LR)、概率神经网络(PNN)和支持向量机(SVM)分类器,以在评估 DBS-STN 对地面反力(GRF)的影响时,区分正常人和 PD 患者,包括有无药物治疗。对 45 名受试者(30 名正常人和 15 名接受双侧 DBS-STN 的 PD 患者)进行了步态分析。PD 患者在四种测试条件下进行评估:无治疗(mof-sof)、单独刺激(mof-son)、单独药物治疗(mon-sof)和药物治疗与刺激(mon-son)。对 GRF 的三个分量分别进行主成分(PC)分析,通过折断棒测试选择垂直方向的六个 PC 得分、一个前后向的 PC 得分和一个左右向的 PC 得分。逐步 LR 分析采用前两个和第五个垂直 PC 得分作为输入变量。使用 bootstrap 方法比较用于对正常人和未经治疗的 PD 患者的 GRF 模式进行分类的模型性能,将前三个和第五个垂直 PC 作为 SVM 的输入变量,同时选择前一个前后向 PC 和前一个左右向 PC 作为 PNN 的输入变量。根据接受者操作特征曲线下的面积和负似然比,PNN 的性能优于 LR 和 SVM。在评估治疗效果时,分类器表明 DBS-STN 单独治疗比单独药物治疗更有效,但两者联合治疗效果最佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验