IEEE Trans Cybern. 2019 Feb;49(2):495-504. doi: 10.1109/TCYB.2017.2778799. Epub 2017 Dec 20.
Segmenting human left ventricle (LV) in magnetic resonance imaging images and calculating its volume are important for diagnosing cardiac diseases. The latter task became the topic of the Second Annual Data Science Bowl organized by Kaggle. The dataset consisted of a large number of cases with only systole and diastole volume labels. We designed a system based on neural networks to solve this problem. It began with a detector to detect the regions of interest (ROI) containing LV chambers. Then a deep neural network named hypercolumns fully convolutional network was used to segment LV in ROI. The 2-D segmentation results were integrated across different images to estimate the volume. With ground-truth volume labels, this model was trained end-to-end. To improve the result, an additional dataset with only segmentation labels was used. The model was trained alternately on these two tasks. We also proposed a variance estimation method for the final prediction. Our algorithm ranked the fourth on the test set in this competition.
在磁共振成像图像中对人体左心室 (LV) 进行分割并计算其体积对于诊断心脏病非常重要。后一项任务成为 Kaggle 组织的第二届年度数据科学竞赛的主题。该数据集包含大量仅具有收缩期和舒张期体积标签的病例。我们设计了一个基于神经网络的系统来解决这个问题。它首先使用一个探测器来检测包含 LV 腔室的感兴趣区域 (ROI)。然后,使用名为 hypercolumns 全卷积网络的深度神经网络对 ROI 中的 LV 进行分割。将 2D 分割结果整合到不同的图像中以估计体积。使用真实体积标签,对该模型进行端到端训练。为了提高结果,还使用了仅具有分割标签的附加数据集。模型在这两个任务上交替训练。我们还提出了一种用于最终预测的方差估计方法。在这项竞赛中,我们的算法在测试集上排名第四。