Suppr超能文献

基于多视图融合卷积神经网络的心磁图左心室容积估计

Multi-Views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images.

出版信息

IEEE Trans Biomed Eng. 2018 Sep;65(9):1924-1934. doi: 10.1109/TBME.2017.2762762. Epub 2017 Oct 13.

Abstract

OBJECTIVE

Left ventricular (LV) volume estimation is a critical procedure for cardiac disease diagnosis. The objective of this paper is to address a direct LV volume prediction task.

METHODS

In this paper, we propose a direct volume prediction method based on the end-to-end deep convolutional neural networks. We study the end-to-end LV volume prediction method in items of the data preprocessing, network structure, and multiview fusion strategy. The main contributions of this paper are the following aspects. First, we propose a new data preprocessing method on cardiac magnetic resonance (CMR). Second, we propose a new network structure for end-to-end LV volume estimation. Third, we explore the representational capacity of different slices and propose a fusion strategy to improve the prediction accuracy.

RESULTS

The evaluation results show that the proposed method outperforms other state-of-the-art LV volume estimation methods on the open accessible benchmark datasets. The clinical indexes derived from the predicted volumes agree well with the ground truth ( ${\rm{EDV:R}}^{{\rm 2}}={\text{0.974}}$, ${\rm{RMSE,}}= {\text{9.6}}{\rm{,ml}}$; ${\rm{ESV:R}}^{{\rm 2}}={\text{0.976}}$, ${\rm{RMSE}}= {\text{7.1}},{\text{ml}}$; ${\rm{EF:R}}^{{\rm 2}} ={\text{0.828}}$, ${\rm{RMSE}}= {\text{4.71}}% $).

CONCLUSION

Experimental results prove that the proposed method may be useful for the LV volume prediction task.

SIGNIFICANCE

The proposed method not only has application potential for cardiac diseases screening for large-scale CMR data, but also can be extended to other medical image research fields.

摘要

目的

左心室(LV)容积估算是心脏病诊断的关键程序。本文的目的是解决直接 LV 容积预测任务。

方法

本文提出了一种基于端到端深度卷积神经网络的直接容积预测方法。我们研究了端到端 LV 容积预测方法在数据预处理、网络结构和多视图融合策略方面的问题。本文的主要贡献如下。首先,我们提出了一种新的心脏磁共振(CMR)数据预处理方法。其次,我们提出了一种新的端到端 LV 容积估计网络结构。第三,我们探索了不同切片的表示能力,并提出了一种融合策略来提高预测精度。

结果

评估结果表明,该方法在公开的基准数据集上优于其他先进的 LV 容积估计方法。从预测体积中得出的临床指标与真实值吻合较好(EDV:${\rm{R}}^{{\rm 2}}={\text{0.974}}$,${\rm{RMSE}}= {\text{9.6}}{\rm{,ml}}$;ESV:${\rm{R}}^{{\rm 2}}={\text{0.976}}$,${\rm{RMSE}}= {\text{7.1}},{\text{ml}}$;EF:${\rm{R}}^{{\rm 2}} ={\text{0.828}}$,${\rm{RMSE}}= {\text{4.71}}%$)。

结论

实验结果证明,该方法可用于 LV 容积预测任务。

意义

该方法不仅具有应用于大规模 CMR 数据的心脏病筛查的潜力,而且可以扩展到其他医学图像研究领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验