IEEE Trans Biomed Eng. 2018 Sep;65(9):1924-1934. doi: 10.1109/TBME.2017.2762762. Epub 2017 Oct 13.
Left ventricular (LV) volume estimation is a critical procedure for cardiac disease diagnosis. The objective of this paper is to address a direct LV volume prediction task.
In this paper, we propose a direct volume prediction method based on the end-to-end deep convolutional neural networks. We study the end-to-end LV volume prediction method in items of the data preprocessing, network structure, and multiview fusion strategy. The main contributions of this paper are the following aspects. First, we propose a new data preprocessing method on cardiac magnetic resonance (CMR). Second, we propose a new network structure for end-to-end LV volume estimation. Third, we explore the representational capacity of different slices and propose a fusion strategy to improve the prediction accuracy.
The evaluation results show that the proposed method outperforms other state-of-the-art LV volume estimation methods on the open accessible benchmark datasets. The clinical indexes derived from the predicted volumes agree well with the ground truth ( ${\rm{EDV:R}}^{{\rm 2}}={\text{0.974}}$, ${\rm{RMSE,}}= {\text{9.6}}{\rm{,ml}}$; ${\rm{ESV:R}}^{{\rm 2}}={\text{0.976}}$, ${\rm{RMSE}}= {\text{7.1}},{\text{ml}}$; ${\rm{EF:R}}^{{\rm 2}} ={\text{0.828}}$, ${\rm{RMSE}}= {\text{4.71}}% $).
Experimental results prove that the proposed method may be useful for the LV volume prediction task.
The proposed method not only has application potential for cardiac diseases screening for large-scale CMR data, but also can be extended to other medical image research fields.
左心室(LV)容积估算是心脏病诊断的关键程序。本文的目的是解决直接 LV 容积预测任务。
本文提出了一种基于端到端深度卷积神经网络的直接容积预测方法。我们研究了端到端 LV 容积预测方法在数据预处理、网络结构和多视图融合策略方面的问题。本文的主要贡献如下。首先,我们提出了一种新的心脏磁共振(CMR)数据预处理方法。其次,我们提出了一种新的端到端 LV 容积估计网络结构。第三,我们探索了不同切片的表示能力,并提出了一种融合策略来提高预测精度。
评估结果表明,该方法在公开的基准数据集上优于其他先进的 LV 容积估计方法。从预测体积中得出的临床指标与真实值吻合较好(EDV:${\rm{R}}^{{\rm 2}}={\text{0.974}}$,${\rm{RMSE}}= {\text{9.6}}{\rm{,ml}}$;ESV:${\rm{R}}^{{\rm 2}}={\text{0.976}}$,${\rm{RMSE}}= {\text{7.1}},{\text{ml}}$;EF:${\rm{R}}^{{\rm 2}} ={\text{0.828}}$,${\rm{RMSE}}= {\text{4.71}}%$)。
实验结果证明,该方法可用于 LV 容积预测任务。
该方法不仅具有应用于大规模 CMR 数据的心脏病筛查的潜力,而且可以扩展到其他医学图像研究领域。