Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
Med Image Anal. 2019 Jan;51:21-45. doi: 10.1016/j.media.2018.10.004. Epub 2018 Oct 19.
Deep fully convolutional neural network (FCN) based architectures have shown great potential in medical image segmentation. However, such architectures usually have millions of parameters and inadequate number of training samples leading to over-fitting and poor generalization. In this paper, we present a novel DenseNet based FCN architecture for cardiac segmentation which is parameter and memory efficient. We propose a novel up-sampling path which incorporates long skip and short-cut connections to overcome the feature map explosion in conventional FCN based architectures. In order to process the input images at multiple scales and view points simultaneously, we propose to incorporate Inception module's parallel structures. We propose a novel dual loss function whose weighting scheme allows to combine advantages of cross-entropy and Dice loss leading to qualitative improvements in segmentation. We demonstrate computational efficacy of incorporating conventional computer vision techniques for region of interest detection in an end-to-end deep learning based segmentation framework. From the segmentation maps we extract clinically relevant cardiac parameters and hand-craft features which reflect the clinical diagnostic analysis and train an ensemble system for cardiac disease classification. We validate our proposed network architecture on three publicly available datasets, namely: (i) Automated Cardiac Diagnosis Challenge (ACDC-2017), (ii) Left Ventricular segmentation challenge (LV-2011), (iii) 2015 Kaggle Data Science Bowl cardiac challenge data. Our approach in ACDC-2017 challenge stood second place for segmentation and first place in automated cardiac disease diagnosis tasks with an accuracy of 100% on a limited testing set (n=50). In the LV-2011 challenge our approach attained 0.74 Jaccard index, which is so far the highest published result in fully automated algorithms. In the Kaggle challenge our approach for LV volume gave a Continuous Ranked Probability Score (CRPS) of 0.0127, which would have placed us tenth in the original challenge. Our approach combined both cardiac segmentation and disease diagnosis into a fully automated framework which is computationally efficient and hence has the potential to be incorporated in computer-aided diagnosis (CAD) tools for clinical application.
基于深度全卷积神经网络(FCN)的架构在医学图像分割中显示出巨大的潜力。然而,这种架构通常具有数百万个参数和不足的训练样本,导致过拟合和较差的泛化能力。在本文中,我们提出了一种新颖的基于 DenseNet 的 FCN 架构,用于心脏分割,该架构具有参数和内存效率。我们提出了一种新颖的上采样路径,该路径结合了长跳跃和短切连接,以克服传统 FCN 架构中特征图爆炸的问题。为了同时处理输入图像的多个尺度和视点,我们提出了合并 Inception 模块的并行结构。我们提出了一种新颖的双损失函数,其加权方案允许结合交叉熵和 Dice 损失的优势,从而导致分割质量的提高。我们在基于深度学习的分割框架中结合了传统计算机视觉技术来进行感兴趣区域检测,以证明计算效率。我们从分割图中提取临床相关的心脏参数和手工制作的特征,这些特征反映了临床诊断分析,并训练了一个用于心脏疾病分类的集成系统。我们在三个公开可用的数据集上验证了我们提出的网络架构,即:(i)自动心脏诊断挑战赛(ACDC-2017),(ii)左心室分割挑战赛(LV-2011),(iii)2015 Kaggle 数据科学碗心脏挑战赛数据。我们的方法在 ACDC-2017 挑战赛中获得了分割第二名和自动心脏疾病诊断任务第一名,在有限的测试集(n=50)上的准确率为 100%。在 LV-2011 挑战赛中,我们的方法达到了 0.74 的 Jaccard 指数,这是迄今为止全自动算法中最高的结果。在 Kaggle 挑战赛中,我们的 LV 体积方法的连续排名概率得分(CRPS)为 0.0127,在原始挑战赛中排名第十。我们的方法将心脏分割和疾病诊断结合到一个完全自动化的框架中,该框架具有计算效率,因此有可能被纳入计算机辅助诊断(CAD)工具,用于临床应用。