Suppr超能文献

基于自适应梯度多目标粒子群优化算法的自组织 RBF 神经网络。

Self-Organizing RBF Neural Network Using an Adaptive Gradient Multiobjective Particle Swarm Optimization.

出版信息

IEEE Trans Cybern. 2019 Jan;49(1):69-82. doi: 10.1109/TCYB.2017.2764744. Epub 2017 Oct 31.

Abstract

One of the major obstacles in using radial basis function (RBF) neural networks is the convergence toward local minima instead of the global minima. For this reason, an adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm is designed to optimize both the structure and parameters of RBF neural networks in this paper. First, the AGMOPSO algorithm, based on a multiobjective gradient method and a self-adaptive flight parameters mechanism, is developed to improve the computation performance. Second, the AGMOPSO-based self-organizing RBF neural network (AGMOPSO-SORBF) can optimize the parameters (centers, widths, and weights), as well as determine the network size. The goal of AGMOPSO-SORBF is to find a tradeoff between the accuracy and the complexity of RBF neural networks. Third, the convergence analysis of AGMOPSO-SORBF is detailed to ensure the prerequisite of any successful applications. Finally, the merits of our proposed approach are verified on multiple numerical examples. The results indicate that the proposed AGMOPSO-SORBF achieves much better generalization capability and compact network structure than some other existing methods.

摘要

径向基函数(RBF)神经网络的主要障碍之一是倾向于局部最小值而不是全局最小值。出于这个原因,本文设计了一种自适应梯度多目标粒子群优化(AGMOPSO)算法,用于优化 RBF 神经网络的结构和参数。首先,基于多目标梯度方法和自适应飞行参数机制开发了 AGMOPSO 算法,以提高计算性能。其次,基于 AGMOPSO 的自组织 RBF 神经网络(AGMOPSO-SORBF)可以优化参数(中心、宽度和权重),并确定网络规模。AGMOPSO-SORBF 的目标是在 RBF 神经网络的准确性和复杂性之间找到一个权衡。第三,详细分析了 AGMOPSO-SORBF 的收敛性,以确保任何成功应用的前提条件。最后,在多个数值示例上验证了所提出方法的优点。结果表明,与其他一些现有方法相比,所提出的 AGMOPSO-SORBF 具有更好的泛化能力和紧凑的网络结构。

相似文献

2
Adaptive Gradient Multiobjective Particle Swarm Optimization.自适应梯度多目标粒子群优化算法。
IEEE Trans Cybern. 2018 Nov;48(11):3067-3079. doi: 10.1109/TCYB.2017.2756874. Epub 2017 Oct 9.
3
An Adaptive-PSO-Based Self-Organizing RBF Neural Network.基于自适应粒子群算法的自组织 RBF 神经网络。
IEEE Trans Neural Netw Learn Syst. 2018 Jan;29(1):104-117. doi: 10.1109/TNNLS.2016.2616413. Epub 2016 Oct 24.
4
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.基于外部档案的多目标粒子群优化算法。
IEEE Trans Cybern. 2017 Sep;47(9):2794-2808. doi: 10.1109/TCYB.2017.2710133. Epub 2017 Jun 12.
5
Research on an online self-organizing radial basis function neural network.在线自组织径向基函数神经网络的研究
Neural Comput Appl. 2010 Jul;19(5):667-676. doi: 10.1007/s00521-009-0323-6. Epub 2010 Jan 9.
6
Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.基于自组织递归神经网络的非线性模型预测控制。
IEEE Trans Neural Netw Learn Syst. 2016 Feb;27(2):402-15. doi: 10.1109/TNNLS.2015.2465174. Epub 2015 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验