Suppr超能文献

具有死区和输出约束的非严格反馈非线性系统的固定时间自适应神经网络控制

Fixed-time adaptive neural network control for nonstrict-feedback nonlinear systems with deadzone and output constraint.

作者信息

Ni Junkang, Wu Zhonghua, Liu Ling, Liu Chongxin

机构信息

Department of Electrical Engineering, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.

College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, PR China.

出版信息

ISA Trans. 2020 Feb;97:458-473. doi: 10.1016/j.isatra.2019.07.013. Epub 2019 Jul 18.

Abstract

This paper considers fixed-time control problem of nonstrict-feedback nonlinear system subjected to deadzone and output constraint. First, tan-type Barrier Lyapunov function (BLF) is constructed to keep system output within constraint. Next, unknown nonlinear function is approximated by radial basis function neural network (RBFNN). Using the property of Gaussian radial basis function, the upper bound of the term containing the unknown nonlinear function is derived and the updating law is proposed to estimate the square of the norm of the neural network weights. Then, virtual control inputs are developed using backstepping design and their derivatives are obtained by fixed-time differentiator. Finally, the actual control input is designed based on deadzone inverse approach. Lyapunov stability analysis shows that the presented method guarantees fixed-time convergence of the tracking error to a small neighborhood around zero while all the other closed-loop signals keep bounded. The presented control strategy addresses algebraic-loop problem, overcomes explosion of complexity and reduces the number of adaptation parameters, which is easy to be implemented with less computation burden. The presented control scheme is applied to academic system, real electromechanical system and aircraft longitudinal system and simulation results demonstrate its effectiveness.

摘要

本文研究了受死区和输出约束的非严格反馈非线性系统的固定时间控制问题。首先,构造正切型障碍李雅普诺夫函数(BLF)以将系统输出保持在约束范围内。其次,利用径向基函数神经网络(RBFNN)逼近未知非线性函数。利用高斯径向基函数的性质,推导了包含未知非线性函数项的上界,并提出了更新律来估计神经网络权重范数的平方。然后,采用反步法设计虚拟控制输入,并通过固定时间微分器获得其导数。最后,基于死区逆方法设计实际控制输入。李雅普诺夫稳定性分析表明,所提出的方法保证了跟踪误差在固定时间内收敛到零附近的一个小邻域,同时所有其他闭环信号保持有界。所提出的控制策略解决了代数环问题,克服了复杂性爆炸,减少了自适应参数的数量,易于实现且计算负担较小。所提出的控制方案应用于学术系统、实际机电系统和飞机纵向系统,仿真结果验证了其有效性。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验