Suppr超能文献

用于识别突变驱动途径和癌症进展的综合框架。

An Integrated Framework for Identifying Mutated Driver Pathway and Cancer Progression.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Mar-Apr;16(2):455-464. doi: 10.1109/TCBB.2017.2788016. Epub 2017 Dec 29.

Abstract

Next-generation sequencing (NGS) technologies provide amount of somatic mutation data in a large number of patients. The identification of mutated driver pathway and cancer progression from these data is a challenging task because of the heterogeneity of interpatient. In addition, cancer progression at the pathway level has been proved to be more reasonable than at the gene level. In this paper, we introduce an integrated framework to identify mutated driver pathways and cancer progression (iMDPCP) at the pathway level from somatic mutation data. First, we use uncertainty coefficient to quantify mutual exclusivity on gene driver pathways and develop a computational framework to identify mutated driver pathways based on the adaptive discrete differential evolution algorithm. Then, we construct cancer progression model for driver pathways based on the Bayesian Network. Finally, we evaluate the performance of iMDPCP on real cancer somatic mutation datasets. The experimental results indicate that iMDPCP is more accurate than state-of-the-art methods according to the enrichment of KEGG pathways, and it also provides new insights on identifying cancer progression at the pathway level.

摘要

下一代测序 (NGS) 技术为大量患者提供了大量体细胞突变数据。由于个体间的异质性,从这些数据中识别突变的驱动途径和癌症进展是一项具有挑战性的任务。此外,已经证明在途径水平上的癌症进展比在基因水平上更合理。在本文中,我们介绍了一种集成框架,用于从体细胞突变数据中识别途径水平上的突变驱动途径和癌症进展(iMDPCP)。首先,我们使用不确定性系数量化基因驱动途径之间的互斥性,并开发了一种基于自适应离散差分进化算法的计算框架来识别突变驱动途径。然后,我们基于贝叶斯网络构建驱动途径的癌症进展模型。最后,我们在真实的癌症体细胞突变数据集上评估 iMDPCP 的性能。实验结果表明,根据 KEGG 途径的富集情况,iMDPCP 比最先进的方法更准确,它还为识别途径水平上的癌症进展提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验