Department of Food Hygiene and Technology, University of León, León, Spain.
Institute of Food Science and Technology, University of León, León, Spain.
PLoS One. 2018 Jul 10;13(7):e0200011. doi: 10.1371/journal.pone.0200011. eCollection 2018.
Salmonella is a major food-borne pathogen able to persist in food processing environments because of its ability to form biofilms. A Salmonella enterica serotype Agona isolate from poultry (S24) was grown at 37°C in biofilms for up to 144 hours (H144) in attachment to polystyrene surfaces. Biofilm structures were examined at different stages in their development (H3, H24, H48, H72, H96 and H144) using confocal laser scanning microscopy (CLSM) in conjunction with fluorescent dyes for live cells (SYTO 9), dead cells (propidium iodide), proteins (fluorescein isothiocyanate isomer I), lipids (DiD'oil), α-polysaccharides (concanavalin A, tetramethylrhodamine conjugate), and β-polysaccharides (calcofluor white M2R). Strain S24 developed a robust biofilm at H72 (biovolume of 166,852.5 ± 13,681.8 μm3 in the observation field of 16,078.2 μm2). The largest biovolume of live cells was also detected at H72 (128,110.3 ± 4,969.1 μm3), decreasing thereafter, which was probably owing to the detachment of cells prior to a new phase of colonization. The percentage of dead cells with regard to total cells in the biofilms increased throughout the incubation, ranging from 2.3 ± 1.1% (H24) to 44.2 ± 11.0% (H144). Proteins showed the greatest biovolume among the extracellular components within the biofilms, with values ranging from 1,295.1 ± 1,294.9 μm3 (H3) to 19,186.2 ± 8,536.0 μm3 (H96). Maximum biovolume values of 15,171.9 ± 660.7 μm3 (H48), 7,055.3 ± 4,415.2 μm3 (H144), and 2,548.6 ± 1,597.5 μm3 (H72) were observed for β-polysaccharides, α-polysaccharides and lipids, respectively. A strong (P < 0.01) positive correlation was found between the total biovolume of biofilm and the biovolume of live cells, proteins and β-polysaccharides, which may serve as useful markers of biofilm formation. The present work provides new insights into the formation of S. Agona biofilms. Our findings may contribute to the designing of reliable strategies for preventing and removing these bacterial communities.
沙门氏菌是一种主要的食源性病原体,能够在食品加工环境中存活,因为它能够形成生物膜。从家禽中分离出的肠炎沙门氏菌血清型阿贡纳(S24)在 37°C 下在聚苯乙烯表面附着生长 144 小时(H144)形成生物膜。使用共聚焦激光扫描显微镜(CLSM)结合荧光染料(SYTO 9)对活细胞、死细胞、蛋白质、脂质、α-多糖和β-多糖进行检测,以检测不同发育阶段的生物膜结构(H3、H24、H48、H72、H96 和 H144)。肠炎沙门氏菌 S24 在 H72 时形成了一个健壮的生物膜(在 16078.2 μm2 的观察场中生物体积为 166852.5 ± 13681.8 μm3)。活细胞的最大生物体积也在 H72 时被检测到(128110.3 ± 4969.1 μm3),此后减少,这可能是由于细胞在新的定植阶段之前脱落。生物膜中总细胞的死细胞百分比随着孵育时间的增加而增加,范围从 2.3 ± 1.1%(H24)到 44.2 ± 11.0%(H144)。在生物膜的细胞外成分中,蛋白质的生物体积最大,范围从 1295.1 ± 1294.9 μm3(H3)到 19186.2 ± 8536.0 μm3(H96)。β-多糖、α-多糖和脂质的最大生物体积值分别为 15171.9 ± 660.7 μm3(H48)、7055.3 ± 4415.2 μm3(H144)和 2548.6 ± 1597.5 μm3(H72)。生物膜总生物体积与活细胞、蛋白质和β-多糖的生物体积之间存在很强的正相关关系(P < 0.01),这可能是生物膜形成的有用标志物。本研究为肠炎沙门氏菌生物膜的形成提供了新的见解。我们的研究结果可能有助于设计可靠的策略来预防和去除这些细菌群落。