Department of Mechanical Engineering , Sungkyunkwan University , Seobu-ro, Jangan-gu, Suwon-si 2066 , Gyeonggi-do , Republic of Korea.
Department of Mechanical Engineering, Sensor and Actuator Center , University of California at Berkeley , Berkeley 94720 , United States.
ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25666-25672. doi: 10.1021/acsami.8b10052. Epub 2018 Jul 19.
Organic-inorganic hybrid layer-by-layer (LBL) composite structures can not only increase the strength and ductility of materials but also well disperse nanomaterials for better-conducting pathways. Here, we discovered the self-assembly process of an organic and silver (Ag) LBL hybrid structure having excellent sustainability during the long-term bending cycle. During the assembly process, the organic and Ag hybrid structure can be self-assembled into a layered structure. Unlike other conventional LBL fabrication processes, we applied the hydrogel scaffold of a biological polymer, which can spontaneously phase separate into an LBL structure in a water/alcohol solvent system. This new hydrogel-based Ag LBL patterns can successfully be printed on a flexible polyimide film without nozzle-clogging problem. Although these Ag LBL patterns cracked during the bending cycle, carbonized organic compounds between the Ag layers help to self-heal within few minutes at a low temperature (<80 °C). On the basis of our new hydrogel-based Ag ink, we could fabricate a fully printed reliable microscale flexible heater. We expect that our self-layering phenomenon can expand to the broad research field of flexible electronics in the near future.
有机-无机杂化层层(LBL)复合结构不仅可以提高材料的强度和延展性,而且还可以很好地分散纳米材料,以形成更好的导电路径。在这里,我们发现了具有出色可持续性的有机和银(Ag)LBL 杂化结构的自组装过程,这种结构在长期弯曲循环中表现良好。在组装过程中,有机和 Ag 杂化结构可以自组装成层状结构。与其他传统的 LBL 制造工艺不同,我们应用了生物聚合物的水凝胶支架,它可以在水/醇溶剂系统中自发地分相形成 LBL 结构。这种新型基于水凝胶的 Ag LBL 图案可以成功地打印在柔性聚酰亚胺薄膜上,而不会出现喷嘴堵塞的问题。尽管这些 Ag LBL 图案在弯曲循环中出现了裂纹,但 Ag 层之间的碳化有机化合物可以在低温(<80°C)下在几分钟内自动修复。基于我们新的基于水凝胶的 Ag 油墨,我们可以制造出完全印刷的可靠微尺度柔性加热器。我们期望我们的自分层现象在不久的将来可以扩展到柔性电子领域的广泛研究领域。