Suppr超能文献

用于印刷柔性混合电子的纳米结构、光子烧结铜膜的超高导电性和优异的界面附着力。

Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics.

机构信息

George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.

Department of Materials Science and Chemical Engineering , Hanyang University , Ansan 15588 , South Korea.

出版信息

ACS Appl Mater Interfaces. 2018 Dec 19;10(50):44071-44079. doi: 10.1021/acsami.8b17164. Epub 2018 Dec 10.

Abstract

Inkjet-printed electronics using metal particles typically lack electrical conductivity and interfacial adhesion with an underlying substrate. To address the inherent issues of printed materials, this Research Article introduces advanced materials and processing methodologies. Enhanced adhesion of the inkjet-printed copper (Cu) on a flexible polyimide film is achieved by using a new surface modification technique, a nanostructured self-assembled monolayer (SAM) of (3-mercaptopropyl)trimethoxysilane. A standardized adhesion test reveals the superior adhesion strength (1192.27 N/m) of printed Cu on the polymer film, while maintaining extreme mechanical flexibility proven by 100 000 bending cycles. In addition to the increased adhesion, the nanostructured SAM treatment on printed Cu prevents formation of native oxide layers. The combination of the newly synthesized Cu ink and associated sintering technique with an intense pulsed ultraviolet and visible light absorption enables ultrahigh conductivity of printed Cu (2.3 × 10 Ω·cm), which is the highest electrical conductivity reported to date. The comprehensive materials engineering technologies offer highly reliable printing of Cu patterns for immediate use in wearable flexible hybrid electronics. In vivo demonstration of printed, skin-conformal Cu electrodes indicates a very low skin-electrode impedance (<50 kΩ) without a conductive gel and successfully measures three types of biopotentials, including electrocardiograms, electromyograms, and electrooculograms.

摘要

喷墨打印电子技术中常用的金属颗粒通常缺乏导电性和与底层基底的界面附着力。为了解决打印材料固有的问题,本文引入了先进的材料和处理方法。通过使用新的表面改性技术——(3-巯丙基)三甲氧基硅烷的纳米结构自组装单层(SAM),实现了喷墨打印铜(Cu)在柔性聚酰亚胺薄膜上的增强附着力。标准化的附着力测试显示,打印在聚合物薄膜上的 Cu 具有优异的附着力(1192.27 N/m),同时保持了经过 100000 次弯曲循环验证的极高机械柔韧性。除了附着力的提高外,纳米结构 SAM 处理还可以防止打印 Cu 形成本征氧化层。新合成的 Cu 油墨和相关的烧结技术与强脉冲紫外可见光吸收相结合,使打印 Cu 的超高导电性(2.3×10 Ω·cm)得以实现,这是迄今为止报道的最高电导率。综合材料工程技术为可穿戴柔性混合电子设备的即时应用提供了可靠的 Cu 图案打印。体内打印、皮肤贴合 Cu 电极的演示表明,在没有导电凝胶的情况下,皮肤-电极的阻抗非常低(<50 kΩ),并且成功测量了包括心电图、肌电图和眼电图在内的三种生物电位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验