Suppr超能文献

非热等离子体沉积的氧化铝纳米颗粒薄膜:合成、表征及结晶

Aluminum Oxide Nanoparticle Films Deposited from a Nonthermal Plasma: Synthesis, Characterization, and Crystallization.

作者信息

Li Zhaohan, Wray Parker R, Su Magel P, Tu Qiaomiao, Andaraarachchi Himashi P, Jeong Yong Jin, Atwater Harry A, Kortshagen Uwe R

机构信息

Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States.

Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, MS 128-95, Pasadena, California 91125 United States.

出版信息

ACS Omega. 2020 Sep 14;5(38):24754-24761. doi: 10.1021/acsomega.0c03353. eCollection 2020 Sep 29.

Abstract

Aluminum oxide, both in amorphous and crystalline forms, is a widely used inorganic ceramic material because of its chemical and structural properties. In this work, we synthesized amorphous aluminum oxide nanoparticles using a capacitively coupled nonthermal plasma utilizing trimethylaluminum and oxygen as precursors and studied their crystallization and phase transformation behavior through postsynthetic annealing. The use of two reactor geometries resulted in amorphous aluminum oxide nanoparticles with similar compositions but different sizes. Size tuning of these nanoparticles was achieved by varying the reactor pressure to produce amorphous aluminum oxide nanoparticles ranging from 6 to 22 nm. During postsynthetic annealing, powder samples of amorphous nanoparticles began to crystallize at 800 °C, forming crystalline θ and γ phase alumina. Their phase transformation behavior was found to be size-dependent in that powders of small 6 nm amorphous particles transformed to form phase-pure α-AlO at 1100 °C, while powders of large 11 nm particles remained in the θ and γ phases. This phenomenon is attributed to the fast rate of densification and neck formation in small amorphous aluminum oxide particles.

摘要

非晶态和晶态的氧化铝因其化学和结构特性,是一种广泛使用的无机陶瓷材料。在本工作中,我们以三甲基铝和氧气作为前驱体,利用电容耦合非热等离子体合成了非晶态氧化铝纳米颗粒,并通过合成后退火研究了它们的结晶和相变行为。使用两种反应器几何结构得到了组成相似但尺寸不同的非晶态氧化铝纳米颗粒。通过改变反应器压力来调整这些纳米颗粒的尺寸,从而制备出尺寸范围为6至22纳米的非晶态氧化铝纳米颗粒。在合成后退火过程中,非晶态纳米颗粒的粉末样品在800℃开始结晶,形成晶态的θ相和γ相氧化铝。发现它们的相变行为与尺寸有关,即6纳米的小尺寸非晶颗粒粉末在1100℃转变为纯相的α-Al₂O₃,而11纳米的大尺寸颗粒粉末则保留在θ相和γ相中。这种现象归因于小尺寸非晶态氧化铝颗粒中致密化和颈部形成的快速速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50ff/7528284/031e1ec885fd/ao0c03353_0002.jpg

相似文献

1
Aluminum Oxide Nanoparticle Films Deposited from a Nonthermal Plasma: Synthesis, Characterization, and Crystallization.
ACS Omega. 2020 Sep 14;5(38):24754-24761. doi: 10.1021/acsomega.0c03353. eCollection 2020 Sep 29.
2
Structural and Morphological Features of Disperse Alumina Synthesized Using Aluminum Nitrate Nonahydrate.
Nanoscale Res Lett. 2016 Dec;11(1):153. doi: 10.1186/s11671-016-1366-0. Epub 2016 Mar 22.
3
Inductively Coupled Nonthermal Plasma Synthesis of Size-Controlled γ-AlO Nanocrystals.
Nanomaterials (Basel). 2023 May 12;13(10):1627. doi: 10.3390/nano13101627.
4
Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red.
J Colloid Interface Sci. 2019 Feb 15;536:180-188. doi: 10.1016/j.jcis.2018.10.054. Epub 2018 Oct 19.
5
Inductively coupled nonthermal plasma synthesis of aluminum nanoparticles.
Nanotechnology. 2021 Jul 6;32(39). doi: 10.1088/1361-6528/ac0cb3.
7
Nano-alumina powders/ceramics derived from aluminum foil waste at low temperature for various industrial applications.
J Environ Manage. 2016 Dec 1;183:121-125. doi: 10.1016/j.jenvman.2016.08.072. Epub 2016 Aug 31.
10
Structural and magnetic properties of Fe and Co nanoparticles embedded in powdered Al2O3.
J Colloid Interface Sci. 2005 Sep 1;289(1):63-70. doi: 10.1016/j.jcis.2005.03.050.

引用本文的文献

本文引用的文献

1
Introduction to the Maxwell Garnett approximation: tutorial.
J Opt Soc Am A Opt Image Sci Vis. 2016 Jul 1;33(7):1244-56. doi: 10.1364/JOSAA.33.001244.
2
Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.
Nano Lett. 2015 Dec 9;15(12):8162-9. doi: 10.1021/acs.nanolett.5b03600. Epub 2015 Nov 13.
3
Amorphous alumina coatings: processing, structure and remarkable barrier properties.
J Nanosci Nanotechnol. 2011 Sep;11(9):8387-91. doi: 10.1166/jnn.2011.5068.
4
A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals.
Nanotechnology. 2010 Aug 20;21(33):335302. doi: 10.1088/0957-4484/21/33/335302. Epub 2010 Jul 27.
5
Structure of amorphous aluminum oxide.
Phys Rev Lett. 2009 Aug 28;103(9):095501. doi: 10.1103/PhysRevLett.103.095501. Epub 2009 Aug 24.
6
Selective nanoparticle heating: another form of nonequilibrium in dusty plasmas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 2):026405. doi: 10.1103/PhysRevE.79.026405. Epub 2009 Feb 25.
7
Effective medium theories for irregular fluffy structures: aggregation of small particles.
Appl Opt. 2007 Jul 1;46(19):4065-72. doi: 10.1364/ao.46.004065.
8
High-yield plasma synthesis of luminescent silicon nanocrystals.
Nano Lett. 2005 Apr;5(4):655-9. doi: 10.1021/nl050066y.
9
Modeling of particulate coagulation in low pressure plasmas.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):887-98. doi: 10.1103/physreve.60.887.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验