Li Zhaohan, Wray Parker R, Su Magel P, Tu Qiaomiao, Andaraarachchi Himashi P, Jeong Yong Jin, Atwater Harry A, Kortshagen Uwe R
Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States.
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, MS 128-95, Pasadena, California 91125 United States.
ACS Omega. 2020 Sep 14;5(38):24754-24761. doi: 10.1021/acsomega.0c03353. eCollection 2020 Sep 29.
Aluminum oxide, both in amorphous and crystalline forms, is a widely used inorganic ceramic material because of its chemical and structural properties. In this work, we synthesized amorphous aluminum oxide nanoparticles using a capacitively coupled nonthermal plasma utilizing trimethylaluminum and oxygen as precursors and studied their crystallization and phase transformation behavior through postsynthetic annealing. The use of two reactor geometries resulted in amorphous aluminum oxide nanoparticles with similar compositions but different sizes. Size tuning of these nanoparticles was achieved by varying the reactor pressure to produce amorphous aluminum oxide nanoparticles ranging from 6 to 22 nm. During postsynthetic annealing, powder samples of amorphous nanoparticles began to crystallize at 800 °C, forming crystalline θ and γ phase alumina. Their phase transformation behavior was found to be size-dependent in that powders of small 6 nm amorphous particles transformed to form phase-pure α-AlO at 1100 °C, while powders of large 11 nm particles remained in the θ and γ phases. This phenomenon is attributed to the fast rate of densification and neck formation in small amorphous aluminum oxide particles.
非晶态和晶态的氧化铝因其化学和结构特性,是一种广泛使用的无机陶瓷材料。在本工作中,我们以三甲基铝和氧气作为前驱体,利用电容耦合非热等离子体合成了非晶态氧化铝纳米颗粒,并通过合成后退火研究了它们的结晶和相变行为。使用两种反应器几何结构得到了组成相似但尺寸不同的非晶态氧化铝纳米颗粒。通过改变反应器压力来调整这些纳米颗粒的尺寸,从而制备出尺寸范围为6至22纳米的非晶态氧化铝纳米颗粒。在合成后退火过程中,非晶态纳米颗粒的粉末样品在800℃开始结晶,形成晶态的θ相和γ相氧化铝。发现它们的相变行为与尺寸有关,即6纳米的小尺寸非晶颗粒粉末在1100℃转变为纯相的α-Al₂O₃,而11纳米的大尺寸颗粒粉末则保留在θ相和γ相中。这种现象归因于小尺寸非晶态氧化铝颗粒中致密化和颈部形成的快速速率。