a Department of Land, Air and Water Resources , University of California , Davis , Davis, CA , USA.
b Center for Environmental Research and Technology , University of California , Riverside , Riverside CA , USA.
J Air Waste Manag Assoc. 2018 Dec;68(12):1301-1316. doi: 10.1080/10962247.2018.1498410. Epub 2018 Sep 7.
Ozone reactivity scales play an important role in selecting which chemical compounds are used in products ranging from gasoline to pesticides to hairspray in California, across the United States and around the world. The California Statewide Air Pollution Research Center (SAPRC) box model that calculates ozone reactivity uses a representative urban atmosphere to predict how much additional ozone forms for each kilogram of compound emission. This representative urban atmosphere has remained constant since 1988, even though more than 25 years of emissions controls have greatly reduced ambient ozone concentrations across the United States during this time period. Here we explore the effects of updating the representative urban atmosphere used for ozone reactivity calculations from 1988 to 2010 conditions by updating the meteorology, emission rates, concentration of initial conditions, concentration of background species, and composition of volatile organic compound (VOC) profiles. Box model scenarios are explored for 39 cities across the United States to calculate the Maximum Incremental Reactivity (MIR) scale for 1,233 individual compounds and compound-mixtures. Median MIR values across the cities decreased by approximately 20.3% when model conditions were updated. The decrease is primarily due to changes in atmospheric composition ultimately attributable to emissions control programs between 1998 and 2010. Further effects were caused by changes in meteorological variables stemming from shifting seasons for peak ozone events (summer versus early fall). Lumped model species with the highest MIR values in 1988 experienced the greatest decrease in MIR values when conditions were updated to 2010. Despite the reduction in the absolute reactivity in the updated 2010 atmosphere, the relative ranking of the VOCs according to their reactivity did not change strongly compared to the original 1988 atmosphere. These findings indicate that past decisions about ozone control programs remain valid today, and the ozone reactivity scale continues to provide relevant guidance for future policy decisions even as new products are developed. Implications: Updating the representative urban atmosphere used for the Maximum Incremental Reactivity (MIR) scale from 1988 to 2010 conditions caused the reactivity of 1223 individual compounds and combined mixtures to decrease by an average of 20.3% but the relative ranking of the VOCs was not strongly affected. This means that previous guidance about preferred chemical formulations to reduce ozone formation in cities across the United States remain valid today, and the MIR scale continues to provide relevant guidance for future policy decisions even as new products are developed.
臭氧反应性尺度在选择用于从加利福尼亚州到美国各地乃至全球的汽油、农药到发胶等产品的化学化合物方面发挥着重要作用。用于计算臭氧反应性的加利福尼亚州大气污染综合研究中心 (SAPRC) 箱式模型使用代表性城市大气来预测每千克化合物排放会形成多少额外的臭氧。自 1988 年以来,这种代表性城市大气一直保持不变,尽管在此期间,超过 25 年的排放控制大大降低了美国各地的环境臭氧浓度。在这里,我们通过更新气象、排放率、初始条件浓度、背景物种浓度和挥发性有机化合物 (VOC) 浓度来探索更新用于臭氧反应性计算的代表性城市大气的影响1988 年至 2010 年的条件。为美国 39 个城市探索了箱式模型情景,以计算 1233 种单一化合物和化合物混合物的最大增量反应性 (MIR) 尺度。当模型条件更新时,城市间的中位数 MIR 值平均下降了约 20.3%。这种下降主要是由于大气成分的变化,最终归因于 1998 年至 2010 年期间的排放控制计划。进一步的影响是由于臭氧事件高峰期的季节变化引起的气象变量变化(夏季与初秋)。1988 年具有最高 MIR 值的综合模型物种在条件更新到 2010 年时,MIR 值下降幅度最大。尽管在更新的 2010 年大气中绝对反应性降低,但与原始 1988 年大气相比,根据其反应性对 VOC 的相对排名变化并不强烈。这些发现表明,过去关于臭氧控制计划的决策在今天仍然有效,臭氧反应性尺度继续为未来的政策决策提供相关指导,即使开发了新产品。影响:将用于最大增量反应性 (MIR) 尺度的代表性城市大气从 1988 年更新到 2010 年条件导致 1223 种单一化合物和组合混合物的反应性平均下降 20.3%,但 VOC 的相对排名受影响不大。这意味着,过去关于在美国各地城市减少臭氧形成的首选化学配方的指导在今天仍然有效,MIR 尺度继续为未来的政策决策提供相关指导,即使开发了新产品。