IEEE Trans Biomed Eng. 2018 Nov;65(11):2428-2439. doi: 10.1109/TBME.2018.2812078. Epub 2018 Mar 8.
Although optical imaging of neurons using fluorescent genetically encoded calcium sensors has enabled large-scale in vivo experiments, the sensors' slow dynamics often blur closely timed action potentials into indistinguishable transients. While several previous approaches have been proposed to estimate the timing of individual spikes, they have overlooked the important and practical problem of estimating interspike interval (ISI) for overlapping transients.
We use statistical detection theory to find the minimum detectable ISI under different levels of signal-to-noise ratio (SNR), model complexity, and recording speed. We also derive the Cramer-Rao lower bounds (CRBs) for the problem of ISI estimation. We use Monte-Carlo simulations with biologically derived parameters to numerically obtain the minimum detectable ISI and evaluate the performance of our estimators. Furthermore, we apply our detector to distinguish overlapping transients from experimentally obtained calcium imaging data.
Experiments based on simulated and real data across different SNR levels and recording speeds show that our algorithms can accurately distinguish two fluorescence signals with ISI on the order of tens of milliseconds, shorter than the waveform's rise time. Our study shows that the statistically optimal ISI estimators closely approached the CRBs.
Our work suggests that full analysis using recording speed, sensor kinetics, SNR, and the sensor's stochastically distributed response to action potentials can accurately resolve ISIs much smaller than the fluorescence waveform's rise time in modern calcium imaging experiments.
Such analysis aids not only in future spike detection methods, but also in future experimental design when choosing sensors of neuronal activity.
尽管使用荧光遗传编码钙传感器对神经元进行光学成像已经能够进行大规模的体内实验,但传感器的动态响应较慢,往往会使紧密时间的动作电位模糊成难以区分的瞬变。虽然已经提出了几种先前的方法来估计单个尖峰的时间,但它们忽略了估计重叠瞬变的尖峰间隔(ISI)的重要和实际问题。
我们使用统计检测理论来在不同的信噪比(SNR)、模型复杂度和记录速度下找到最小可检测 ISI。我们还推导出了用于 ISI 估计问题的克拉美-罗下限(CRB)。我们使用基于生物衍生参数的蒙特卡罗模拟来数值获得最小可检测 ISI,并评估我们的估计器的性能。此外,我们将我们的检测器应用于从实验获得的钙成像数据中区分重叠的瞬变。
基于不同 SNR 水平和记录速度的模拟和真实数据的实验表明,我们的算法可以准确地区分具有数十毫秒量级 ISI 的两个荧光信号,比波形的上升时间短。我们的研究表明,统计最优 ISI 估计器非常接近 CRB。
我们的工作表明,使用记录速度、传感器动力学、SNR 以及传感器对动作电位的随机分布响应的全面分析可以准确地解析比现代钙成像实验中荧光波形上升时间小得多的 ISI。
这种分析不仅有助于未来的尖峰检测方法,而且在选择神经元活动传感器时也有助于未来的实验设计。