Institut de Neurosciences de la Timone (INT), CNRS and Aix-Marseille Université, UMR 7289, 27 boulevard Jean Moulin, Marseille 13005, France.
CNRS FRE-3693, Unité de Neurosciences Information et Complexité, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France.
Nat Commun. 2016 Jul 19;7:12190. doi: 10.1038/ncomms12190.
Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators. Model parameters can be either provided by the user or estimated from the data themselves. MLspike is computationally efficient thanks to its original discretization of probability representations; moreover, it can also return spike probabilities or samples. Benchmarked on extensive simulations and real data from seven different preparations, it outperformed state-of-the-art algorithms. Combined with the finding obtained from systematic data investigation (noise level, spiking rate and so on) that photonic noise is not necessarily the main limiting factor, our method allows spike extraction from large-scale recordings, as demonstrated on acousto-optical three-dimensional recordings of over 1,000 neurons in vivo.
从大规模双光子记录中提取神经元尖峰活动仍然具有挑战性,特别是在体内的哺乳动物中,其中大的噪声通常会污染信号。我们提出了一种方法 MLspike,它返回了测量钙荧光下最有可能的尖峰序列。它依赖于一个生理模型,包括基线波动和用于合成和遗传编码指示剂的不同非线性。模型参数可以由用户提供,也可以从数据本身估计。由于其概率表示的原始离散化,MLspike 在计算上非常高效;此外,它还可以返回尖峰概率或样本。在广泛的模拟和来自七个不同准备的真实数据的基准测试中,它优于最先进的算法。结合系统数据调查(噪声水平、尖峰率等)的发现,即光子噪声不一定是主要限制因素,我们的方法允许从大规模记录中提取尖峰,如在体内超过 1000 个神经元的声光三维记录中所示。