Friedrich Johannes, Zhou Pengcheng, Paninski Liam
Department of Statistics, Grossman Center for the Statistics of Mind, and Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America.
Janelia Research Campus, Ashburn, Virginia, United States of America.
PLoS Comput Biol. 2017 Mar 14;13(3):e1005423. doi: 10.1371/journal.pcbi.1005423. eCollection 2017 Mar.
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop.
荧光钙指示剂是观察大量神经元群体脉冲活动的常用手段,但从原始荧光钙成像数据中提取每个神经元的活动是一个复杂的问题。我们提出了一种快速在线活动集方法来解决这个稀疏非负反卷积问题。重要的是,该算法从始至终依次处理每个时间序列,从而能够在成像过程中实时在线估计神经活动。我们的算法是用于保序回归的池相邻违规者算法(PAVA)的推广,并继承了其线性时间计算复杂度。我们在处理速度上有显著提升:与目前依赖内点法的先进凸求解器相比,提高了一个多数量级。与这些方法不同,我们的方法可以利用热启动;因此,优化模型超参数只需要对数据进行少量遍历。通过对最小脉冲大小施加约束,一个小的修改可以进一步提高活动推断的质量。该算法能够在笔记本电脑上对O(105)条全脑幼体斑马鱼成像数据轨迹进行实时同步反卷积。