IEEE Trans Biomed Eng. 2018 Dec;65(12):2684-2691. doi: 10.1109/TBME.2018.2813265. Epub 2018 Mar 7.
This study was performed to evaluate how well states of deep sedation in ICU patients can be detected from the frontal electroencephalogram (EEG) using features based on the method of atomic decomposition (AD).
We analyzed a clinical dataset of 20 min of EEG recordings per patient from 44 mechanically ventilated adult patients receiving sedatives in an intensive care unit (ICU) setting. Several features derived from AD of the EEG signal were used to discriminate between awake and sedated states. We trained support vector machine (SVM) classifiers using AD features and compared the classification performance with SVM classifiers trained using standard spectral and entropy features using leave-one-subject-out validation. The potential of each feature to discriminate between awake and sedated states was quantified using area under the receiver operating characteristic curve (AUC).
The sedation level classification system using AD was able to reliably discriminate between sedated and awake states achieving an average AUC of 0.90, which was significantly better () than performance achieved using spectral (AUC = 0.86) and entropy (AUC = 0.81) domain features. A combined feature set consisting of AD, entropy, and spectral features provided better discrimination (AUC = 0.91, ) than any individual feature set.
Features derived from the atomic decomposition of EEG signals provide useful discriminative information about the depth of sedation in ICU patients.
With further refinement and external validation, the proposed system may be able to assist clinical staff with continuous surveillance of sedation levels in mechanically ventilated critically ill ICU patients.
本研究旨在评估基于原子分解(AD)方法的特征从 ICU 患者的额部脑电图(EEG)中检测深度镇静状态的效果。
我们分析了 44 名在 ICU 环境中接受镇静剂机械通气的成年患者的 20 分钟 EEG 记录的临床数据集。使用 AD 对 EEG 信号进行特征提取,以区分清醒和镇静状态。我们使用 AD 特征训练支持向量机(SVM)分类器,并使用标准谱和熵特征训练的 SVM 分类器进行比较,采用留一受试者验证。使用受试者工作特征曲线(ROC)下面积(AUC)来量化每个特征区分清醒和镇静状态的能力。
使用 AD 的镇静水平分类系统能够可靠地区分镇静和清醒状态,平均 AUC 为 0.90,明显优于使用谱(AUC = 0.86)和熵(AUC = 0.81)特征的分类性能。由 AD、熵和谱特征组成的组合特征集提供了更好的区分(AUC = 0.91,)比任何单个特征集。
从 EEG 信号的原子分解中得出的特征提供了关于 ICU 患者镇静深度的有用的鉴别信息。
经过进一步的改进和外部验证,该系统可能能够协助临床工作人员对机械通气的危重症 ICU 患者进行持续的镇静水平监测。