Suppr超能文献

基于原子分解的 ICU 患者深度镇静脑电信号检测

Electroencephalogram Based Detection of Deep Sedation in ICU Patients Using Atomic Decomposition.

出版信息

IEEE Trans Biomed Eng. 2018 Dec;65(12):2684-2691. doi: 10.1109/TBME.2018.2813265. Epub 2018 Mar 7.

Abstract

OBJECTIVE

This study was performed to evaluate how well states of deep sedation in ICU patients can be detected from the frontal electroencephalogram (EEG) using features based on the method of atomic decomposition (AD).

METHODS

We analyzed a clinical dataset of 20 min of EEG recordings per patient from 44 mechanically ventilated adult patients receiving sedatives in an intensive care unit (ICU) setting. Several features derived from AD of the EEG signal were used to discriminate between awake and sedated states. We trained support vector machine (SVM) classifiers using AD features and compared the classification performance with SVM classifiers trained using standard spectral and entropy features using leave-one-subject-out validation. The potential of each feature to discriminate between awake and sedated states was quantified using area under the receiver operating characteristic curve (AUC).

RESULTS

The sedation level classification system using AD was able to reliably discriminate between sedated and awake states achieving an average AUC of 0.90, which was significantly better () than performance achieved using spectral (AUC = 0.86) and entropy (AUC = 0.81) domain features. A combined feature set consisting of AD, entropy, and spectral features provided better discrimination (AUC = 0.91, ) than any individual feature set.

CONCLUSIONS

Features derived from the atomic decomposition of EEG signals provide useful discriminative information about the depth of sedation in ICU patients.

SIGNIFICANCE

With further refinement and external validation, the proposed system may be able to assist clinical staff with continuous surveillance of sedation levels in mechanically ventilated critically ill ICU patients.

摘要

目的

本研究旨在评估基于原子分解(AD)方法的特征从 ICU 患者的额部脑电图(EEG)中检测深度镇静状态的效果。

方法

我们分析了 44 名在 ICU 环境中接受镇静剂机械通气的成年患者的 20 分钟 EEG 记录的临床数据集。使用 AD 对 EEG 信号进行特征提取,以区分清醒和镇静状态。我们使用 AD 特征训练支持向量机(SVM)分类器,并使用标准谱和熵特征训练的 SVM 分类器进行比较,采用留一受试者验证。使用受试者工作特征曲线(ROC)下面积(AUC)来量化每个特征区分清醒和镇静状态的能力。

结果

使用 AD 的镇静水平分类系统能够可靠地区分镇静和清醒状态,平均 AUC 为 0.90,明显优于使用谱(AUC = 0.86)和熵(AUC = 0.81)特征的分类性能。由 AD、熵和谱特征组成的组合特征集提供了更好的区分(AUC = 0.91,)比任何单个特征集。

结论

从 EEG 信号的原子分解中得出的特征提供了关于 ICU 患者镇静深度的有用的鉴别信息。

意义

经过进一步的改进和外部验证,该系统可能能够协助临床工作人员对机械通气的危重症 ICU 患者进行持续的镇静水平监测。

相似文献

9
Quantitative electroencephalogram in term neonates under different sleep states.足月新生儿不同睡眠状态下的定量脑电图。
J Clin Monit Comput. 2024 Jun;38(3):591-602. doi: 10.1007/s10877-023-01082-6. Epub 2023 Oct 18.

引用本文的文献

2
Consciousness and complexity: a consilience of evidence.意识与复杂性:证据的一致性
Neurosci Conscious. 2021 Aug 30;2021(2):niab023. doi: 10.1093/nc/niab023. eCollection 2021.
7
Adaptive Sedation Monitoring From EEG in ICU Patients With Online Learning.ICU 患者基于 EEG 的自适应镇静监测与在线学习。
IEEE Trans Biomed Eng. 2020 Jun;67(6):1696-1706. doi: 10.1109/TBME.2019.2943062. Epub 2019 Sep 23.

本文引用的文献

3
EEG entropy measures in anesthesia.麻醉中的 EEG 熵测量。
Front Comput Neurosci. 2015 Feb 18;9:16. doi: 10.3389/fncom.2015.00016. eCollection 2015.
5
Measuring the effects of sevoflurane on electroencephalogram using sample entropy.运用样本熵测量七氟醚对脑电图的影响。
Acta Anaesthesiol Scand. 2012 Aug;56(7):880-9. doi: 10.1111/j.1399-6576.2012.02676.x. Epub 2012 Mar 8.
7
General anesthesia, sleep, and coma.全身麻醉、睡眠与昏迷。
N Engl J Med. 2010 Dec 30;363(27):2638-50. doi: 10.1056/NEJMra0808281.
9
Analysis of depth of anesthesia with Hilbert-Huang spectral entropy.基于希尔伯特-黄谱熵的麻醉深度分析
Clin Neurophysiol. 2008 Nov;119(11):2465-75. doi: 10.1016/j.clinph.2008.08.006. Epub 2008 Sep 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验