IEEE Trans Biomed Eng. 2020 Jun;67(6):1696-1706. doi: 10.1109/TBME.2019.2943062. Epub 2019 Sep 23.
Sedative medications are routinely administered to provide comfort and facilitate clinical care in critically ill ICU patients. Prior work shows that brain monitoring using electroencephalography (EEG) to track sedation levels may help medical personnel to optimize drug dosing and avoid the adverse effects of oversedation and undersedation. However, the performance of sedation monitoring methods proposed to date deal poorly with individual variability across patients, leading to inconsistent performance. To address this challenge we develop an online learning approach based on Adaptive Regularization of Weight Vectors (AROW). Our approach adaptively updates a sedation level prediction algorithm under a continuously evolving data distribution. The prediction model is gradually calibrated for individual patients in response to EEG observations and routine clinical assessments over time. The evaluations are performed on a population of 172 sedated ICU patients whose sedation levels were assessed using the Richmond Agitation-Sedation Scale (scores between -5 = comatose and 0 = awake). The proposed adaptive model achieves better performance than the same model without adaptation (average accuracies with tolerance of one level difference: 68.76% vs. 61.10%). Moreover, our approach is shown to be robust to sudden changes caused by label noise. Medication administrations have different effects on model performance. We find that the model performs best in patients receiving only propofol, compared to patients receiving no sedation or multiple simultaneous sedative medications.
镇静药物通常用于为重症监护病房(ICU)中的危重症患者提供舒适感和便利的临床护理。先前的研究表明,使用脑电图(EEG)进行脑监测以跟踪镇静水平,可能有助于医务人员优化药物剂量,避免过度镇静和镇静不足的不良反应。然而,迄今为止提出的镇静监测方法在处理患者个体差异方面表现不佳,导致性能不一致。为了解决这一挑战,我们开发了一种基于自适应正则化权向量(AROW)的在线学习方法。我们的方法在不断变化的数据分布下自适应地更新镇静水平预测算法。随着时间的推移,预测模型会根据 EEG 观察和常规临床评估,逐渐针对个体患者进行校准。评估是在 172 名接受镇静治疗的 ICU 患者群体上进行的,这些患者的镇静水平使用 Richmond 躁动-镇静量表(评分范围为-5=昏迷和 0=清醒)进行评估。与没有自适应的相同模型相比,所提出的自适应模型具有更好的性能(容忍一个级别差异的平均准确率:68.76%对 61.10%)。此外,我们的方法被证明对标签噪声引起的突然变化具有鲁棒性。药物给药对模型性能有不同的影响。我们发现,与未接受镇静或同时接受多种镇静药物的患者相比,该模型在仅接受异丙酚的患者中表现最佳。