Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Department of Anaesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Br J Anaesth. 2019 Oct;123(4):479-487. doi: 10.1016/j.bja.2019.06.004. Epub 2019 Jul 18.
Sedation indicators based on a single quantitative EEG (QEEG) feature have been criticised for their limited performance. We hypothesised that integration of multiple QEEG features into a single sedation-level estimator using a machine learning algorithm could reliably predict levels of sedation, independent of the sedative drug used.
In total, 102 subjects receiving propofol (N=36; 16 male/20 female), sevoflurane (N=36; 16 male/20 female), or dexmedetomidine (N=30; 15 male/15 female) were included in this study of healthy volunteers. Sedation level was assessed using the Modified Observer's Assessment of Alertness/Sedation (MOAA/S) score. We used 44 QEEG features estimated from the EEG data in a logistic regression algorithm, and an elastic-net regularisation method was used for feature selection. The area under the receiver operator characteristic curve (AUC) was used to assess the performance of the logistic regression model.
The performances obtained when the system was trained and tested as drug-dependent mode to distinguish between awake and sedated states (mean AUC [standard deviation]) were propofol=0.97 (0.03), sevoflurane=0.74 (0.25), and dexmedetomidine=0.77 (0.10). The drug-independent system resulted in mean AUC=0.83 (0.17) to discriminate between the awake and sedated states.
The incorporation of large numbers of QEEG features and machine learning algorithms is feasible for next-generation monitors of sedation level. Different QEEG features were selected for propofol, sevoflurane, and dexmedetomidine groups, but the sedation-level estimator maintained a high performance for predicting MOAA/S independent of the drug used.
NCT02043938; NCT03143972.
基于单个定量脑电图(QEEG)特征的镇静指标因其性能有限而受到批评。我们假设,使用机器学习算法将多个 QEEG 特征整合到单个镇静水平估计器中,可以可靠地预测镇静水平,而与使用的镇静药物无关。
共有 102 名接受异丙酚(N=36;16 名男性/20 名女性)、七氟醚(N=36;16 名男性/20 名女性)或右美托咪定(N=30;15 名男性/15 名女性)的健康志愿者参与了这项研究。镇静水平使用改良观察者警觉/镇静评分(MOAA/S)进行评估。我们使用来自 EEG 数据的 44 个 QEEG 特征在逻辑回归算法中进行估计,并使用弹性网正则化方法进行特征选择。使用接收者操作特征曲线下的面积(AUC)评估逻辑回归模型的性能。
当系统以药物依赖模式进行训练和测试以区分清醒和镇静状态时,获得的性能(平均 AUC[标准差])为异丙酚=0.97(0.03),七氟醚=0.74(0.25),和右美托咪定=0.77(0.10)。用于区分清醒和镇静状态的非药物独立系统的平均 AUC 为 0.83(0.17)。
大量 QEEG 特征和机器学习算法的结合对于下一代镇静水平监测器是可行的。异丙酚、七氟醚和右美托咪定组选择了不同的 QEEG 特征,但镇静水平估计器在预测 MOAA/S 时保持了较高的性能,而与使用的药物无关。
NCT02043938;NCT03143972。