IEEE Trans Biomed Eng. 2019 Jan;66(1):41-49. doi: 10.1109/TBME.2018.2834546. Epub 2018 May 9.
This paper aims to explore affordable biomarkers of Alzheimer's disease (AD) based on noninvasive, low cost, and portability electroencephalography (EEG) signals.
By combining multiscale analysis and embedding space theory, a novel strategy was developed for constructing brain functional network inferred from generalized composite multiscale entropy vector (GCMSEV). Functional network analysis and seed analysis were used for comparing AD pattern versus control pattern. Machine learning methods were employed for proving the effectiveness of our method.
Patients with AD exhibited hypoconnectivity over the whole scalp, especially for long-range connections. Significant decreased connections between frontal and other regions reveals that the transmission of signals related to frontal hub is indeed damaged due to AD. The predictors consist of interfrontal and left frontal-right occipital connections that led to a good performance for distinguishing AD patients and normal subjects with over 96% classification accuracy and 0.98 parametric area under curve.
Above findings demonstrated the superior power of the EEG markers quantified by our GCMSEV network, as the indicator of abnormal functional connectivity in the brain of AD patients.
This paper develops a novel EEG-based strategy for functional connectivity quantification and enriches the topographical biomarkers used for neurophysiological assessment.
本文旨在探索基于非侵入性、低成本和便携性脑电图(EEG)信号的阿尔茨海默病(AD)负担得起的生物标志物。
通过结合多尺度分析和嵌入空间理论,开发了一种从广义复合多尺度熵向量(GCMSEV)推断脑功能网络的新策略。功能网络分析和种子分析用于比较 AD 模式与对照模式。采用机器学习方法证明了我们方法的有效性。
AD 患者表现出整个头皮的连接不足,尤其是长程连接。额叶与其他区域之间的连接显著减少表明,由于 AD,与额叶枢纽相关的信号传输确实受到了损害。预测因子由额间和左侧额-右侧枕部连接组成,这使得区分 AD 患者和正常受试者的性能良好,分类准确率超过 96%,参数曲线下面积为 0.98。
上述发现表明,我们的 GCMSEV 网络量化的 EEG 标志物具有优越的功能连接异常指示能力,可作为 AD 患者大脑异常功能连接的指标。
本文开发了一种基于 EEG 的新策略用于功能连接量化,并丰富了用于神经生理学评估的拓扑生物标志物。