Brain Connectivity Laboratory, Department of Neuroscience & Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy.
Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy.
J Alzheimers Dis. 2020;75(4):1253-1261. doi: 10.3233/JAD-200171.
Several studies investigated clinical and instrumental differences to make diagnosis of dementia in general and in Alzheimer's disease (AD) in particular with the aim to classify, at the individual level, AD patients and healthy controls cooperating with neuropsychological tests for an early diagnosis. Advanced network analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity and could be used in classification processes. If successfully reached, this goal would add a low-cost, easily accessible, and non-invasive technique with neuropsychological tests.
To investigate the possibility to automatically classify physiological versus pathological aging from cortical sources' connectivity based on a support vector machine (SVM) applied to EEG small-world parameter.
A total of 295 subjects were recruited: 120 healthy volunteers and 175 AD. Graph theory functions were applied to undirected and weighted networks obtained by lagged linear coherence evaluated by eLORETA. A machine-learning classifier (SVM) was applied. EEG frequency bands were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz).
The receiver operating characteristic curve showed AUC of 0.97±0.03 (indicating very high classification accuracy). The classifier showed 95% ±5% sensitivity, 96% ±3% specificity, and 95% ±3% accuracy for the classification.
EEG connectivity analysis via a combination of source/connectivity biomarkers, highly correlating with neuropsychological AD diagnosis, could represent a promising tool in identification of AD patients. This approach represents a low-cost and non-invasive method, one that utilizes widely available techniques which, when combined, reach high sensitivity/specificity and optimal classification accuracy on an individual basis (0.97 of AUC).
已有多项研究旨在通过临床和仪器检查方面的差异来对痴呆症(尤其是阿尔茨海默病)做出诊断,其目的是在个体层面上对 AD 患者和配合神经心理学测试进行早期诊断的健康对照进行分类。脑电图(EEG)节律的高级网络分析提供了有关动态脑连接的信息,可用于分类过程。如果成功实现,这一目标将增加一种低成本、易于获取、且无创伤的技术,即神经心理学测试。
基于 EEG 小世界参数的支持向量机(SVM),探究从皮质源连接自动分类生理性与病理性衰老的可能性。
共招募 295 名受试者:120 名健康志愿者和 175 名 AD 患者。通过 eLORETA 评估的滞后线性相干性计算无向和加权网络,应用图论函数。采用机器学习分类器(SVM)。EEG 频带为:δ(2-4Hz)、θ(4-8Hz)、α1(8-10.5Hz)、α2(10.5-13Hz)、β1(13-20Hz)、β2(20-30Hz)和γ(30-40Hz)。
受试者工作特征曲线的 AUC 为 0.97±0.03(表明分类准确性非常高)。该分类器对 AD 的分类准确率为 95%±5%,灵敏度为 96%±3%,特异性为 95%±3%。
通过源/连接生物标志物组合进行 EEG 连接分析,与神经心理学 AD 诊断高度相关,可作为 AD 患者识别的一种有前途的工具。这种方法具有成本低、无创伤的特点,它利用了广泛应用的技术,当这些技术结合使用时,在个体基础上可达到高灵敏度/特异性和最佳分类准确性(AUC 为 0.97)。