IEEE Trans Biomed Eng. 2019 Feb;66(2):433-443. doi: 10.1109/TBME.2018.2847404. Epub 2018 Jun 14.
Multiway array decomposition has been successful in providing a better understanding of the structure underlying data and in discovering potentially hidden feature dependences serving high-performance decoder applications. However, the computational cost of multiway algorithms can become prohibitive, especially when considering large datasets, rendering them unsuitable for time-critical applications.
We propose a multiway regression model for large-scale tensors with optimized performance in terms of time complexity, called fast higher order partial least squares (fHOPLS).
We compare fHOPLS with its native version, higher order partial least squares (HOPLS), the state-of-the-art in multilinear regression, under different noise conditions and tensor dimensionalities using synthetic data. We also compare their performance when used for predicting scalp-recorded electroencephalography signals from invasively recorded electrocorticography signals in an oddball experiment. For the sake of exposition, we evaluated the performance of standard unfolded partial least squares (PLS) and linear regression.
Our results show that fHOPLS is significantly faster than HOPLS, in particular for big data. In addition, the regression performances of fHOPLS and HOPLS are comparable and outperform both unfolded PLS and linear regression. Another interesting result is that multiway array decoding yields more accurate results than epoch-based averaging procedures traditionally used in the brain computer interfacing community.
多维数组分解在提供对数据底层结构的更好理解以及发现潜在隐藏的特征依赖性方面取得了成功,这些特征依赖性可用于高性能解码器应用。然而,多维算法的计算成本可能变得过高,特别是在考虑大型数据集时,这使得它们不适合时间关键型应用。
我们提出了一种用于大规模张量的多维回归模型,该模型在时间复杂度方面具有优化的性能,称为快速高阶偏最小二乘(fHOPLS)。
我们使用合成数据,在不同的噪声条件和张量维数下,将 fHOPLS 与其本机版本(高阶偏最小二乘(HOPLS))、多线性回归的最新技术进行比较。我们还比较了它们在用于从侵入性记录的脑电图信号预测头皮记录的脑电图信号的奇数实验中的性能。为了说明问题,我们评估了标准展开偏最小二乘(PLS)和线性回归的性能。
我们的结果表明,fHOPLS 比 HOPLS 快得多,特别是对于大数据。此外,fHOPLS 和 HOPLS 的回归性能相当,优于展开 PLS 和线性回归。另一个有趣的结果是,与传统上在脑机接口社区中使用的基于epoch 的平均过程相比,多维数组解码可产生更准确的结果。