Suppr超能文献

使用合成数据和偏最小二乘回归预测智能传感环境中的活动持续时间:以痴呆症患者为例。

Predicting Activity Duration in Smart Sensing Environments Using Synthetic Data and Partial Least Squares Regression: The Case of Dementia Patients.

机构信息

Department of Productivity and Innovation, Universidad de la Costa CUC, Barranquilla 08002, Colombia.

Department of Intelligent Systems and Digital Design, Halmstad University, P.O. Box 823, S 301 18 Halmstad, Sweden.

出版信息

Sensors (Basel). 2022 Jul 20;22(14):5410. doi: 10.3390/s22145410.

Abstract

The accurate recognition of activities is fundamental for following up on the health progress of people with dementia (PwD), thereby supporting subsequent diagnosis and treatments. When monitoring the activities of daily living (ADLs), it is feasible to detect behaviour patterns, parse out the disease evolution, and consequently provide effective and timely assistance. However, this task is affected by uncertainties derived from the differences in smart home configurations and the way in which each person undertakes the ADLs. One adjacent pathway is to train a supervised classification algorithm using large-sized datasets; nonetheless, obtaining real-world data is costly and characterized by a challenging recruiting research process. The resulting activity data is then small and may not capture each person’s intrinsic properties. Simulation approaches have risen as an alternative efficient choice, but synthetic data can be significantly dissimilar compared to real data. Hence, this paper proposes the application of Partial Least Squares Regression (PLSR) to approximate the real activity duration of various ADLs based on synthetic observations. First, the real activity duration of each ADL is initially contrasted with the one derived from an intelligent environment simulator. Following this, different PLSR models were evaluated for estimating real activity duration based on synthetic variables. A case study including eight ADLs was considered to validate the proposed approach. The results revealed that simulated and real observations are significantly different in some ADLs (p-value < 0.05), nevertheless synthetic variables can be further modified to predict the real activity duration with high accuracy (R2(pred)>90%).

摘要

活动的准确识别对于跟踪痴呆症患者(PwD)的健康进展至关重要,从而为后续的诊断和治疗提供支持。在监测日常生活活动(ADLs)时,可以检测行为模式,解析疾病演变,从而提供有效和及时的帮助。然而,这项任务受到智能家居配置差异以及每个人进行 ADLs 方式的不确定性的影响。一种可行的方法是使用大型数据集训练有监督的分类算法;然而,获取真实世界的数据成本高昂,并且招募研究过程具有挑战性。因此,得到的活动数据量较小,可能无法捕捉每个人的内在特性。仿真方法已成为一种高效的替代选择,但与真实数据相比,合成数据可能存在较大差异。因此,本文提出了应用偏最小二乘回归(PLSR)来根据合成观测值近似各种 ADLs 的真实活动持续时间。首先,根据智能环境模拟器,将每个 ADL 的真实活动持续时间与从模拟器中获得的活动持续时间进行对比。然后,基于合成变量,评估了不同的 PLSR 模型来估计真实活动持续时间。考虑了一个包括八项 ADLs 的案例研究来验证所提出的方法。结果表明,在某些 ADLs 中,模拟和真实观测值存在显著差异(p 值<0.05),但可以进一步修改合成变量以高精度预测真实活动持续时间(R2(pred)>90%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc7/9318990/5cc54a3ef0c3/sensors-22-05410-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验