IEEE Trans Biomed Eng. 2018 Sep;65(9):1943-1952. doi: 10.1109/TBME.2018.2845706. Epub 2018 Jun 8.
Automatic segmentation of brainstem gliomas and prediction of genotype (H3 K27M) mutation status based on magnetic resonance (MR) images are crucial but challenging tasks for computer-aided diagnosis in neurosurgery. In this paper, we present a novel cascaded deep convolutional neural network (CNN) to address these two challenging tasks simultaneously.
Our novel segmentation task contains two feature-fusion modules: the Gaussian-pyramid multiscale input features-fusion technique and the brainstem-region feature enhancement. The aim is to resolve very difficult problems in brainstem glioma segmentation. Our prediction model combines CNN features and support-vector-machine classifier to automatically predict genotypes without region-of-interest labeled-MR images and is learned jointly with the segmentation task. First, Gaussian-pyramid multiscale input feature fusion is added to our glioma-segmentation task to solve the problems of size variety and weak brainstem-gliomas boundaries. Second, the two feature-fusion modules provide both local and global contexts to retain higher frequency details for sharper tumor boundaries, handling the problem of the large variation of tumor shape, and volume resolution.
Experiments demonstrate that our cascaded CNN method achieves not only a good tumor segmentation result with a high Dice similarity coefficient of 77.03%, but also a competitive genotype prediction result with an average accuracy of 94.85% upon fivefold cross-validation.
基于磁共振(MR)图像对脑干部位胶质瘤进行自动分割,并预测基因型(H3 K27M)突变状态,这对神经外科的计算机辅助诊断至关重要,但极具挑战性。本文提出了一种新的级联深度卷积神经网络(CNN),以同时解决这两个具有挑战性的任务。
我们的新分割任务包含两个特征融合模块:高斯金字塔多尺度输入特征融合技术和脑干部位特征增强。目的是解决脑干部位胶质瘤分割中的非常困难的问题。我们的预测模型结合 CNN 特征和支持向量机分类器,在没有感兴趣区域标记的 MR 图像的情况下自动预测基因型,并与分割任务一起进行联合学习。首先,在胶质瘤分割任务中添加了高斯金字塔多尺度输入特征融合,以解决大小变化和脑干部位胶质瘤边界弱的问题。其次,两个特征融合模块提供了局部和全局上下文,保留了更高频率的细节,使肿瘤边界更加锐利,处理了肿瘤形状和体积分辨率变化较大的问题。
实验表明,我们的级联 CNN 方法不仅实现了良好的肿瘤分割效果,Dice 相似系数高达 77.03%,而且在五重交叉验证中,基因型预测的平均准确率达到 94.85%,具有竞争力。