IEEE Trans Biomed Eng. 2018 Nov;65(11):2440-2449. doi: 10.1109/TBME.2018.2797919. Epub 2018 Jan 25.
This work proposes a machine-learning based system for a scalp EEG that flags an alarm in advance of a clinical seizure onset.
EEG recordings from 12 patients with drug resistant epilepsy were marked by an expert neurologist for clinical seizure onset. Scalp EEG recordings consisted of 56 seizures and 9.67 h of interictal periods. Data from six patients were reserved for testing, and the rest was split into training and testing sets. A global spatial average of a cross-frequency coupling (CFC) index, , was extracted in 2 s windows, and used as the feature for the machine learning. A multistage state classifier (MSC) based on random forest algorithms was trained and tested on these data. Training was conducted to classify three states: interictal baseline, and segments prior to and following EG onset. Classifier performance was assessed using a receiver-operating characteristic (ROC) analysis.
The MSC produced an alarm 45 16 s in advance of a clinical seizure onset across seizures from the 12 patients. It performed with a sensitivity of 87.9%, a specificity of 82.4%, and an area-under-the-ROC of 93.4%. On patients for whom it received training, performance metrics increased. Performance metrics did not change when the MSC used reduced electrode ring configurations.
Using the scalp , the MSC produced an alarm in advance of a clinical seizure onset for all 12 patients. Patient-specific training improved the specificity of classification.
The MSC is noninvasive, and demonstrates that CFC features may be suitable for use in a home-based seizure monitoring system.
本研究提出了一种基于机器学习的头皮 EEG 系统,该系统可在临床癫痫发作前发出警报。
由一位神经科专家对 12 名耐药性癫痫患者的 EEG 记录进行标记,以确定临床癫痫发作的开始。头皮 EEG 记录包括 56 次癫痫发作和 9.67 小时的发作间期。来自 6 名患者的数据被保留用于测试,其余数据被分为训练集和测试集。提取 2 s 窗口内的跨频耦合(CFC)指数的全局空间平均值,作为机器学习的特征。基于随机森林算法的多阶段状态分类器(MSC)在这些数据上进行训练和测试。训练用于对三种状态进行分类:发作间期基线,以及癫痫发作开始前和开始后的段。使用接收者操作特征(ROC)分析评估分类器性能。
该 MSC 在 12 名患者的癫痫发作中,在临床癫痫发作前 45 16 s 发出警报。其灵敏度为 87.9%,特异性为 82.4%,ROC 下面积为 93.4%。在接受训练的患者中,性能指标有所提高。当 MSC 使用减少的电极环配置时,性能指标没有变化。
使用头皮 EEG,MSC 为所有 12 名患者在临床癫痫发作前发出了警报。患者特异性训练提高了分类的特异性。
MSC 是非侵入性的,并表明 CFC 特征可能适用于基于家庭的癫痫监测系统。