Center for Neuroscience Research, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA 15212, USA.
Clin Neurophysiol. 2010 Nov;121(11):1832-43. doi: 10.1016/j.clinph.2010.04.016. Epub 2010 May 14.
The purpose of this study was to evaluate and validate an offline, automated scalp EEG-based seizure detection system and to compare its performance to commercially available seizure detection software.
The test seizure detection system, IdentEvent™, was developed to enhance the efficiency of post-hoc long-term EEG review in epilepsy monitoring units. It translates multi-channel scalp EEG signals into multiple EEG descriptors and recognizes ictal EEG patterns. Detection criteria and thresholds were optimized in 47 long-term scalp EEG recordings selected for training (47 subjects, ∼3653h with 141 seizures). The detection performance of IdentEvent was evaluated using a separate test dataset consisting of 436 EEG segments obtained from 55 subjects (∼1200h with 146 seizures). Each of the test EEG segments was reviewed by three independent epileptologists and the presence or absence of seizures in each epoch was determined by majority rule. Seizure detection sensitivity and false detection rate were calculated for IdentEvent as well as for the comparable detection software (Persyst's Reveal®, version 2008.03.13, with three parameter settings). Bootstrap re-sampling was applied to establish the 95% confidence intervals of the estimates and for the performance comparison between two detection algorithms.
The overall detection sensitivity of IdentEvent was 79.5% with a false detection rate (FDR) of 2 per 24h, whereas the comparison system had 80.8%, 76%, and 74% sensitivity using its three detection thresholds (perception score) with FDRs of 13, 8, and 6 per 24h, respectively. Bootstrap 95% confidence intervals of the performance difference revealed that the two detection systems had comparable detection sensitivity, but IdentEvent generated a significantly (p<0.05) smaller FDR.
The study validates the performance of the IdentEvent™ seizure detection system.
With comparable detection sensitivity, an improved false detection rate makes the automated seizure detection software more useful in clinical practice.
本研究旨在评估和验证一种离线、自动头皮 EEG 癫痫发作检测系统,并将其性能与商业可用的癫痫发作检测软件进行比较。
测试癫痫发作检测系统 IdentEvent™ 旨在提高癫痫监测单元中事后长期 EEG 复查的效率。它将多通道头皮 EEG 信号转换为多个 EEG 描述符,并识别癫痫发作 EEG 模式。检测标准和阈值在 47 个用于训练的长期头皮 EEG 记录(47 个受试者,约 3653 小时 141 次癫痫发作)中进行了优化。IdentEvent 的检测性能使用由 55 个受试者获得的 436 个 EEG 段组成的独立测试数据集进行评估(约 1200 小时 146 次癫痫发作)。每个测试 EEG 段由三位独立的癫痫学家进行审查,并通过多数规则确定每个时段是否存在癫痫发作。IdentEvent 以及可比的检测软件(Persyst 的 Reveal®,版本 2008.03.13,有三个参数设置)计算了癫痫发作检测灵敏度和假阳性率。应用自举重采样来确定估计值的 95%置信区间以及两种检测算法之间的性能比较。
IdentEvent 的总体检测灵敏度为 79.5%,假阳性率(FDR)为 2 次/24 小时,而比较系统使用其三个检测阈值(感知评分)的灵敏度分别为 80.8%、76%和 74%,假阳性率分别为 13、8 和 6 次/24 小时。性能差异的自举 95%置信区间表明,两种检测系统具有可比的检测灵敏度,但 IdentEvent 产生的 FDR 显著较小(p<0.05)。
本研究验证了 IdentEvent™ 癫痫发作检测系统的性能。
具有可比的检测灵敏度,较低的假阳性率使自动癫痫发作检测软件在临床实践中更有用。