Suppr超能文献

一种用于不平衡分类的成本敏感深度信念网络。

A Cost-Sensitive Deep Belief Network for Imbalanced Classification.

作者信息

Zhang Chong, Tan Kay Chen, Li Haizhou, Hong Geok Soon

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Jan;30(1):109-122. doi: 10.1109/TNNLS.2018.2832648. Epub 2018 May 28.

Abstract

Imbalanced data with a skewed class distribution are common in many real-world applications. Deep Belief Network (DBN) is a machine learning technique that is effective in classification tasks. However, conventional DBN does not work well for imbalanced data classification because it assumes equal costs for each class. To deal with this problem, cost-sensitive approaches assign different misclassification costs for different classes without disrupting the true data sample distributions. However, due to lack of prior knowledge, the misclassification costs are usually unknown and hard to choose in practice. Moreover, it has not been well studied as to how cost-sensitive learning could improve DBN performance on imbalanced data problems. This paper proposes an evolutionary cost-sensitive deep belief network (ECS-DBN) for imbalanced classification. ECS-DBN uses adaptive differential evolution to optimize the misclassification costs based on the training data that presents an effective approach to incorporating the evaluation measure (i.e., G-mean) into the objective function. We first optimize the misclassification costs, and then apply them to DBN. Adaptive differential evolution optimization is implemented as the optimization algorithm that automatically updates its corresponding parameters without the need of prior domain knowledge. The experiments have shown that the proposed approach consistently outperforms the state of the art on both benchmark data sets and real-world data set for fault diagnosis in tool condition monitoring.

摘要

在许多实际应用中,具有偏斜类分布的不平衡数据很常见。深度信念网络(DBN)是一种在分类任务中有效的机器学习技术。然而,传统的DBN在不平衡数据分类中效果不佳,因为它假设每个类别的错误分类成本相同。为了解决这个问题,成本敏感方法为不同的类分配不同的错误分类成本,同时不破坏真实数据样本的分布。然而,由于缺乏先验知识,错误分类成本在实践中通常是未知的且难以选择。此外,关于成本敏感学习如何提高DBN在不平衡数据问题上的性能,尚未得到充分研究。本文提出了一种用于不平衡分类的进化成本敏感深度信念网络(ECS-DBN)。ECS-DBN使用自适应差分进化基于训练数据优化错误分类成本,这是一种将评估指标(即G均值)纳入目标函数的有效方法。我们首先优化错误分类成本,然后将其应用于DBN。自适应差分进化优化作为一种优化算法来实现,它可以自动更新其相应参数,而无需先验领域知识。实验表明,所提出的方法在工具状态监测中的故障诊断基准数据集和实际数据集上均始终优于现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验