Suppr超能文献

用于不平衡学习的具有稀疏代价矩阵的进化极限学习机。

Evolutionary extreme learning machine with sparse cost matrix for imbalanced learning.

作者信息

Li Hui, Yang Xi, Li Yang, Hao Li-Ying, Zhang Tian-Lun

机构信息

College of Information Science and Technology, Dalian Maritime University, Dalian, China.

Maritime Electrical Engineering College, Dalian Maritime University, Dalian, China.

出版信息

ISA Trans. 2020 May;100:198-209. doi: 10.1016/j.isatra.2019.11.020. Epub 2019 Nov 23.

Abstract

Extreme learning machine is a popular machine learning technique for single hidden layer feed-forward neural network. However, due to the assumption of equal misclassification cost, the conventional extreme learning machine fails to properly learn the characteristics of the data with skewed category distribution. In this paper, to enhance the representation of few-shot cases, we break down that assumption by assigning penalty factors to different classes, and minimizing the cumulative classification cost. To this end, a case-weighting extreme learning machine is developed on a sparse cost matrix with a diagonal form. To be more actionable, we formulate a multi-objective optimization with respect to penalty factors, and optimize this problem using an evolutionary algorithm combined with an error bound model. By doing so, this proposed method is developed into an adaptive cost-sensitive learning, which is guided by the relation between the generalization ability and the case-weighting factors. In a broad experimental study, our method achieves competitive results on benchmark and real-world datasets for software bug reports identification.

摘要

极限学习机是一种用于单隐藏层前馈神经网络的流行机器学习技术。然而,由于假设误分类成本相等,传统的极限学习机无法正确学习类别分布不均衡的数据特征。在本文中,为了增强少样本情况的表示能力,我们通过为不同类别分配惩罚因子并最小化累积分类成本来打破这一假设。为此,在具有对角形式的稀疏成本矩阵上开发了一种案例加权极限学习机。为了更具可操作性,我们针对惩罚因子制定了多目标优化,并使用结合误差界模型的进化算法对该问题进行优化。通过这样做,所提出的方法发展成为一种自适应成本敏感学习,它由泛化能力和案例加权因子之间的关系引导。在广泛的实验研究中,我们的方法在用于软件漏洞报告识别的基准和真实世界数据集上取得了有竞争力的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验