IEEE J Biomed Health Inform. 2019 May;23(3):1181-1191. doi: 10.1109/JBHI.2018.2841992. Epub 2018 May 29.
Predicting malignant potential is one of the most critical components of a computer-aided diagnosis system for gastrointestinal stromal tumors (GISTs). These tumors have been studied only on the basis of subjective computed tomography findings. Among various methodologies, radiomics, and deep learning algorithms, specifically convolutional neural networks (CNNs), have recently been confirmed to achieve significant success by outperforming the state-of-the-art performance in medical image pattern classification and have rapidly become leading methodologies in this field. However, the existing methods generally use radiomics or deep convolutional features independently for pattern classification, which tend to take into account only global or local features, respectively. In this paper, we introduce and evaluate a hybrid structure that includes different features selected with radiomics model and CNNs and integrates these features to deal with GISTs classification. The Radiomics model and CNNs are constructed for global radiomics and local convolutional feature selection, respectively. Subsequently, we utilize distinct radiomics and deep convolutional features to perform pattern classification for GISTs. Specifically, we propose a new pooling strategy to assemble the deep convolutional features of 54 three-dimensional patches from the same case and integrate these features with the radiomics features for independent case, followed by random forest classifier. Our method can be extensively evaluated using multiple clinical datasets. The classification performance (area under the curve (AUC): 0.882; 95% confidence interval (CI): 0.816-0.947) consistently outperforms those of independent radiomics (AUC: 0.807; 95% CI: 0.724-0.892) and CNNs (AUC: 0.826; 95% CI: 0.795-0.856) approaches.
预测恶性潜能是胃肠道间质瘤(GIST)计算机辅助诊断系统的最关键组成部分之一。这些肿瘤仅基于主观 CT 发现进行研究。在各种方法中,放射组学和深度学习算法,特别是卷积神经网络(CNN),最近已被证实通过在医学图像模式分类中的卓越性能超越了最先进的水平,并且已迅速成为该领域的主要方法。然而,现有的方法通常独立使用放射组学或深度卷积特征进行模式分类,这分别倾向于仅考虑全局或局部特征。在本文中,我们引入并评估了一种混合结构,该结构包括使用放射组学模型和 CNN 选择的不同特征,并将这些特征集成在一起以处理 GIST 分类。放射组学模型和 CNN 分别用于全局放射组学和局部卷积特征选择。随后,我们利用不同的放射组学和深度卷积特征对 GIST 进行模式分类。具体来说,我们提出了一种新的池化策略,用于组装来自同一病例的 54 个三维斑块的深度卷积特征,并将这些特征与放射组学特征集成在一起,然后使用随机森林分类器进行分类。我们的方法可以使用多个临床数据集进行广泛评估。分类性能(曲线下面积(AUC):0.882;95%置信区间(CI):0.816-0.947)始终优于独立放射组学(AUC:0.807;95%CI:0.724-0.892)和 CNN(AUC:0.826;95%CI:0.795-0.856)方法。