Suppr超能文献

基于多模态 MRI 的深度放射组学模型预测新辅助放化疗治疗宫颈癌的疗效。

Multimodal MRI-based deep-radiomics model predicts response in cervical cancer treated with neoadjuvant chemoradiotherapy.

机构信息

College of Computer and Data Science of Fuzhou University, Fuzhou, China.

Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.

出版信息

Sci Rep. 2024 Aug 17;14(1):19090. doi: 10.1038/s41598-024-70055-9.

Abstract

Platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy has been proposed as an alternative treatment approach for cervical cancer (CC) in stage Ib2-IIb, who had a strong desire to be treated with surgery. Our study aims to develop a model based on multimodal MRI by using radiomics and deep learning to predict the treatment response in CC patients treated with neoadjuvant chemoradiotherapy (NACRT). From August 2009 to June 2013, CC patients in stage Ib2-IIb (FIGO 2008) who received NACRT at Fujian Cancer Hospital were enrolled in our study. Clinical information, contrast-enhanced T1-weighted imaging (CE-T1WI), and T2-weighted imaging (T2WI) data were respectively collected. Radiomic features and deep abstract features were extracted from the images using radiomics and deep learning models, respectively. Then, ElasticNet and SVM-RFE were employed for feature selection to construct four single-sequence feature sets. Early fusion of two multi-sequence feature sets and one hybrid feature set were performed, followed by classification prediction using four machine learning classifiers. Subsequently, the performance of the models in predicting the response to NACRT was evaluated by separating patients into training and validation sets. Additionally, overall survival (OS) and disease-free survival (DFS) were assessed using Kaplan-Meier survival curves. Among the four machine learning models, SVM exhibited the best predictive performance (AUC=0.86). Among the seven feature sets, the hybrid feature set achieved the highest values for AUC (0.86), ACC (0.75), Recall (0.75), Precision (0.81), and F1-score (0.75) in the validation set, outperforming other feature sets. Furthermore, the predicted outcomes of the model were closely associated with patient OS and DFS (p = 0.0044; p = 0.0039). A model based on MRI images with features from multiple sequences and different methods could precisely predict the response to NACRT in CC patients. This model could assist clinicians in devising personalized treatment plans and predicting patient survival outcomes.

摘要

铂类新辅助化疗(NACT)后行根治性子宫切除术已被提议作为 Ib2-IIb 期宫颈癌(CC)患者的替代治疗方法,这些患者强烈希望接受手术治疗。我们的研究旨在开发一种基于多模态 MRI 的模型,通过使用放射组学和深度学习来预测接受新辅助放化疗(NACRT)的 CC 患者的治疗反应。

从 2009 年 8 月至 2013 年 6 月,在福建肿瘤医院接受 NACRT 的 Ib2-IIb 期(FIGO 2008)CC 患者被纳入本研究。分别收集临床信息、对比增强 T1 加权成像(CE-T1WI)和 T2 加权成像(T2WI)数据。使用放射组学和深度学习模型分别从图像中提取放射组学特征和深度抽象特征。然后,使用 ElasticNet 和 SVM-RFE 进行特征选择,构建四个单序列特征集。对两个多序列特征集和一个混合特征集进行早期融合,然后使用四个机器学习分类器进行分类预测。

随后,通过将患者分为训练集和验证集来评估模型预测 NACRT 反应的性能。此外,使用 Kaplan-Meier 生存曲线评估总生存(OS)和无病生存(DFS)。在四种机器学习模型中,SVM 表现出最佳的预测性能(AUC=0.86)。在七种特征集中,混合特征集在验证集的 AUC(0.86)、ACC(0.75)、Recall(0.75)、Precision(0.81)和 F1-score(0.75)方面达到最高值,优于其他特征集。此外,模型的预测结果与患者的 OS 和 DFS 密切相关(p=0.0044;p=0.0039)。

基于具有多序列和不同方法特征的 MRI 图像的模型可以精确预测 CC 患者对 NACRT 的反应。该模型可以帮助临床医生制定个性化的治疗计划并预测患者的生存结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d19d/11330439/1602dafaa99b/41598_2024_70055_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验