Suppr超能文献

基于连续称重的食物摄入量和膳食微观结构的自动分析。

Automatic Analysis of Food Intake and Meal Microstructure Based on Continuous Weight Measurements.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):893-902. doi: 10.1109/JBHI.2018.2812243. Epub 2018 Mar 5.

Abstract

The structure of the cumulative food intake (CFI) curve has been associated with obesity and eating disorders. Scales that record the weight loss of a plate from which a subject eats food are used for capturing this curve; however, their measurements are contaminated by additive noise and are distorted by certain types of artifacts. This paper presents an algorithm for automatically processing continuous in-meal weight measurements in order to extract the clean CFI curve and in-meal eating indicators, such as total food intake and food intake rate. The algorithm relies on the representation of the weight-time series by a string of symbols that correspond to events such as bites or food additions. A context-free grammar is next used to model a meal as a sequence of such events. The selection of the most likely parse tree is finally used to determine the predicted eating sequence. The algorithm is evaluated on a dataset of 113 meals collected using the Mandometer, a scale that continuously samples plate weight during eating. We evaluate the effectiveness for seven indicators and for bite-instance detection. We compare our approach with three state-of-the-art algorithms, and achieve the lowest error rates for most indicators (24 g for total meal weight). The proposed algorithm extracts the parameters of the CFI curve automatically, eliminating the need for manual data processing, and thus facilitating large-scale studies of eating behavior.

摘要

累积食物摄入量 (CFI) 曲线的结构与肥胖和饮食失调有关。用于记录受试者从其中进食的盘子的减重的秤用于捕获该曲线;然而,它们的测量值受到附加噪声的污染,并被某些类型的伪影扭曲。本文提出了一种自动处理连续进食重量测量的算法,以提取干净的 CFI 曲线和进食指标,例如总食物摄入量和食物摄入量率。该算法依赖于将重量时间序列表示为字符串的符号,这些符号对应于咬或食物添加等事件。接下来,使用上下文无关语法将膳食建模为这种事件的序列。最后,使用选择最可能的解析树来确定预测的进食序列。该算法在使用 Mandometer 收集的 113 餐数据集上进行了评估,Mandometer 在进食过程中连续采样盘子的重量。我们针对七个指标和咬实例检测评估了有效性。我们将我们的方法与三种最先进的算法进行了比较,并在大多数指标上实现了最低的错误率(总餐重 24 克)。所提出的算法自动提取 CFI 曲线的参数,无需手动数据处理,从而促进了大规模的进食行为研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验